

icosahedral subboxing and multireference

We will visit the following concepts:

• Icosahedral symmetry
• Subboxing
• PCA + Kmeans classification
• Effect of masks on PCA
• Multireference alignment
• Creation of MRA projects from command lie
• “Dynamo Wizard” interface

Main Idea

We will produce a data set of icosahedral viruses.
Each capsid will have artificially generated insertions in a random number of its vertices, I.e, we create a
population of heterogeneous vertices (with and without insertion).

Thus we are not interested in aligning and classifying capsids themselves (as they can be of many different
structural patterns), but in extracting the vertices and classifying them separately.

● Create a tutorial data set
Illustrates the main features of the synthetic data
● A set of of icosahedral viruses:
● An artificial “ insertion” is added in some vertices of some copies: Heterogeneity.

● Create a noisy tutorial data set
● Vertices are “subboxed”: a new data set is created, so that each particle is one of the vertices

of the original viruses.

● Create a project for multireference alignment
● The project will align the vertices to several randomly created references.

● Analyze results from a multireference alignment
● Retrieve results from a multireference project (averages, tables).
● Scan which particles are in which reference at which iteration.

● Modify a project
● Experiment with different numerical parameters

dpktut.herpes.tutorial('nonoise','M',12,'maximumInsertions',6,'noise',0,....
'strength',5, 'subbox',false)

folder that will contain all created files

we want to do the subboxing (cropping of the vertices) manually

We start creating a tutorial folder with all the synthetic data that we need.

Number of created capsidae

each particle can have a random number of inseritons,
each one located in a random position in the virus

intensity of the synthetic insertions

>> dslices nonoise/data ­jz 0

Each data particle is a copy of a virus with a random number of vertices occupied by an “ insertion”.
There is no “unique” repeating structure at the scale of the virus.
The structure that is repeating are the two version of the vertex (with and without the insertion).

Let us check what we have

This is exactly the task of subboxing:

If we know:

● The shifts and rotations of the particles in relation to an average or an ideal template.
 (I. e.: we know the table of the virus data set)

● The position of an asymmetric unit in the ideal template.

● The symmetry operations that link the different asymmetric units that we want to analyze separately.

We just need to measure the distance from a vertex to the center of the virus:

As suggested by the tutorial, we depict the average of the virus particles:

dmapview nonoise/realAverage.em

we activate the option
of clicking two points
(called 'C' for center
 and 'N' for north);

use [C] to choose
 the center

use [N] to click
on one vertex

you can read the distance in the [Clicks] Panel of mapview

Actually we also have a read of the coordinates of an asymmetric unit (the N marker), but they have been
picked rather arbitrarily.
A better option is to use the computed distance from the unit to the center (~25) and compute automatically
the exact symmetrically determined position of the unit:

For the given sidelength and distance to the center,
this is one of the symmetrically related positions
in the capsid of a virus when it is aligned along
the conventions of icosahedral symmetry!

… and compute our subboxing:

now, with the position of the vertex, we can follow the suggestions of the tutorial....

we know where the subboxed vertices and their corresponding
table have been created, so we can take a look onto them:

>> ddbrowse ­d verticesNoNoise/data ­t verticesNoNoise/subbox_table.tbl

activate the table,
(otherwise the particles will not be aligned)

select a view

press to create the representation

x projection view of all subboxed vertex particles y projection view of all subboxed vertex particles

dtplot verticesNoNoise/subbox_table.tbl ­pf oriented_positions

dpktut.herpes.tutorial('mytest','M',12,'maximumInsertions',6,....
 'sidelengthVertex',32,'noise',8,'strength',5,'subbox',true);

Now, we repeat the synthetic data set with some more realistic noise:

dpktut.herpes.tutorial('mytest','M',12,'maximumInsertions',6,....
 'sidelengthVertex',32,'noise',8,'strength',5);

Now, we repeat the synthetic data set with some more realistic noise:

This time we also let the tutorial to create a subboxing

dview mytest/realAverage.em

dslices mytest/vertices/data z -t mytest/vertices/subbox_table.tbl -otf 1 -align 1 -l class

Does not really look like anything!

It is difficult to judge if class 2 (vertices with “insertion”) look only richer in mass than
particles on class 1.

daverage mytest/vertices/data -t mytest/vertices/subbox_table.tbl … .
 -tr class=1 -ws av1;

The question now is if there is signal at all in the synthetic data set.

What would be the best outcome from an optimal algorithm?

Let's see what happens if we use our a priori knowledge about:
● Orientations and shifts (i.e. we know the table)
● class membership
to average all the particles belonging to one class

Also, we can write it for class 2

daverage mytest/vertices/data -t mytest/vertices/subbox_table.tbl … .
 -tr class=2 -ws av2;
daverage mytest/vertices/data -t mytest/vertices/subbox_table.tbl … .
 -tr class=2 -ws av2;

daverage mytest/vertices/data -t mytest/vertices/subbox_table.tbl -ws av;

Also, we can write it for class 2 Also, we can write it for class 2

and for all vertex particles together

We can keep the computed average as a file:
dwrite(av.average,'fullAverage.em');

dslices({av1,av2,av},'jz',14:15,'dim',[1,3]);

The average of class 2 shows indeed the extra density.

The average of all particles taken together blurs the moiety out.

dslices({av1,av2,av},'jx',12:18,'dim',[1,3]);

PART II

 Principal Component Analysis

We try to classify the subboxed, noisy vertices using PCA + kmeans

First, we illustrate how to use GUI for this end. In this case we will show the full pipeline from scratch.

First, we should invoke the GUI that controls the projects for computation of a ccmatrix:

>> dynamo_ccmatrix_project_manager();

Alternatively (as not everybody remembers all commands!) you can just invoke the general
dynamo menu and choose the classification option:

>> dynamo

… and browse or provide the real files (table and classification mask) and data folders

on the empty GUI, we start designing our project

we need to provide a name

data and table are the ones provided by the subboxing.
what do we do with the classification mask?

We will just design a mask and plug it into the GUI.

We will do it comparing it with the average of all the vertices, in order to create a mask tightly bound to
the area where we expect the possible presence of inclusions, or in general the area where we expect
that our sample shows structural diversity.

dmask ­for fullAverage.em

choose a cylinder as shape for the mask select height and radius

type a name for the mask file to be created “overlay” represents the extent of the mask on the reference volume

x-overlay view z-overlay view

The overlay view is useful to make certain that our mask fits the area that we
are interested in.

After playing with the parameters, we press on [create mask] to produce
 the mask file that we arew going to plug into our classification project.

We can set “bin 1” to spare computation time.
(The parameter “align” gets included by default, no need to add explicitly)

We browse of type the mask file
we just created.

we save the project... …run it (can take some time)... … and then open the analysis GUI

We can check in [Status] in which part of the classification pipeline we are right now.

The Xmatrix is just a computational aid to speed
the process of computation.
The project does not contain yet any Xmatrix,
so we need to create one, and then proceed
with the computation of the Principal
Components themselves.

We do have a ccmatrix inside the project

… but we don't have an Xmatrix yet

checking directly the status of the xmatrix confirms it's not there....

sow we just compute it and carry on

Now the Xmatrix is there

so we can proced with
the still missing PCA analysis

Press to compute eigenvolumes (principal components) and eigentable (particle coordinates on this basis)

Now we have the eigenvolumes
and the eigentable that extends the
initial table with new columns.

Columns 41 onwards in this table
are the components of the particle
in the basis of eigenvolumes.

we can compute our classification on the system of coordinates induced by the PCA

and when it's done we can compute the subaverages (class averages) induced by the classification
that we just computed.

real life often requires a careful reflexion on these parameters!
inspection of the eigenvolumes is useful to decide which ones to use for classification.

Now, the [Status] button shows
that the classification is complete

panelview is the most comfortable way to show a family photo of the computed subaverages

 There are two classes showing the moiety, and three that don't

PART II(b)

● PCA from command line

● Impact of the classification mask

Once you feel confident with the classification pipeline, things can be done more efficiently through the command line.

For instance, let's check what happens if we choose to use a bigger mask for classification.

This time we will operate the full process (setting the project, running it and accessing the results) from the prompt.

>> dmask ­size 32 ­r 16 ­o maskBig.em

>> dvccmatrix pcBigmask ­d mytest/vertices/data ­t mytest/vertices/subbox_table.tbl
­m maskBig.em ­steps all ­bin 1;

>> dvunfold pcBigmask

>> pcBigmask

creates a bigger, spherical mask..

creates a new classification project. We can pass directly the values for table (­t), data (­d), mask (­d), and also
detail computational orders (as sym), in this case “­bin1”

States that new classification project will include all
steps of the classificacion pipeline:
● ccmatrix
● Xmatrix computation
● PCA computation
● kmeans
● creation of class averages

prepares hard disk for execution (dvunfold), and execution itself (can take some time)

After execution of the project you recover control of the matlab shell.

>>ddb pcBigmask:subaverage:sref=* ­pv

and results can be accessed from the command line:

command
(dynamo data base)

in which project we look

which item class we look for

an identifier for the items that we want
(in this case “sref=*” meaning all subreferences)

What to do with the retrieved item
in this case: send to panelview browser

type doc ddb for a complete description of the syntax of ddb.

We only have two subreferences (class averages) because the flag ­step all was using default parameters.

Check
doc dvccmatrix
to see how to change the parameters from the command line: number of subreferences, identity of components to use,
fine tuning of the Xmatrix computation, etc...

the wider mask is still able to classify according to the central densities.
Still, the classification is of less quality than the previous one (less contrast of the central embedded density)

In any case, it is easy to access the ccmatrix GUIs
even if you started working from the command line

dgui pc1

dccmatrix_analysis ­p pc1

To open the ccmatrix design GUI:
(to compute a ccmatrix)

To open the ccmatrix analysis GUI
(for PCA after a ccmatrix has been computed):

A final exercise to get familiar with command line driven classification:

Repeat the classification using the symmetry c5 expected form the vertices

>> dvccmatrix pc5 ­d mytest/vertices/data ­t
mytest/vertices/subbox_table.tbl ­m tightMask.em ­steps all ­bin 1 ­sym c5;

>> dvunfold pc5

>> pc5

ddb pc5:eigentable ­eigenvalues

We depict now (for instance) a scatterplot of the eigencomponents superposed to a colorcode of the classification

PART III

 Multireference analysis

We will create a multireference project from the command line.

>>dvpr pmulti ­nref 3 ­d mytest/vertices/data ­m maskBig.em
>>dvput pmulti cmask tightMask.em;
>>dwrite_multireference fullAverage.em template folder_seeds ­refs 1:3 ­noise 0.5
>>dwrite_multireference mytest/vertices/subbox_table.tbl table folder_seeds ­refs 1:3
>>dwrite_multireference full fmask folder_seeds ­refs 1:3
>>dvput pmulti seeds folder_seeds;
>>dvput pmulti ­cr 0 ­cs 1 ­ir 0 ­is 1 ­limm 2 ­dim ­32 ­rf 0 ­sym c5 ite_r1 10;
>>dvunfold pmulti;
>>pmulti

this requires 10 lines of code (or just one if you really like enormous lines)

We comment them in the following slides

>>dvpr pmulti ­nref 3 ­d mytest/vertices/data ­m maskBig.em

>>dvput pmulti cmask tightMask.em;

We create a project called pmulti, which will have 3 references.

Note:
By defaulft, a project initiated with several references will run a MultiReference Analysis, letting
particles to swap between multireference channels after each refinement iterations.

we can pass already in this command all the project parameters that we
want. You can pass them with the full parameter name, or use the syntax
of dvpr for short flags

 In this case we just pass the parameters 'data_folder' (shortened
to the flag '­d') and 'file_mask' (shortened to the flag '­m').

Type doc dvpr to see a list of flags accepted by this command.

The rest of the parameters can be passed with dvput.
Check dvhelp to see a list of parameter names and shortnames.
In this case we are passing a classification mask.

Remember that in a MRA project two masks are typically used:
* Alignment mask to drive the alignment.
* Classification mask to focus on the part where we expect structural hetereogeneity.

The next lines format the “seeds” (the sets of initial tables, references and fourier masks) as required by a multiple
reference alignment.

In the easiest input format, for any of these parameters (file_table_initial,file_tempalte_initial,
file_fmask_initial) you can provide the name of a folder that contains a set of files for each reference.

 The files have to be named following a given naming convention.
 For instance, in a folder called “myFolder”, you could have two files:
myFolder/table_initial_ref_001.tbl
myFolder/table_initial_ref_002.tbl
and then you must pass myFolder as value of the project parameter file_table_initial

You can prepare all your files manually, and the use dvput to enter them into the project.
However, the command dwrite_multireference automatizes many tasks
(file creation and file name formatting) that you typically need when dealing with the seeds of a MRA project

>>dwrite_multireference fullAverage.em template folder_seeds ­refs 1:3 ­noise 0.5

This command:

● creates three copies of the file fullAverage.em and adds random noise of amplitude 0.5;
● writes them in the folder folder_seeds with the right naming convention to serve as template in a project

depiction of the contents, see next slide

Footnote:
dwrite_multireference creates also a .sel file that can be used
to define multiple files as input for a Dynamo project parameter.
Both ways are equally valid, so we just ignore the .sel file during
this tutorial

So, our starting maps are three different realizations of the same level of noise
 imposed on the average of all the particles

>>dwrite_multireference mytest/vertices/subbox_table.tbl table folder_seeds ­refs 1:3

>>dwrite_multireference full fmask folder_seeds ­refs 1:3

>>dvput pmulti seeds folder_seeds;

The next lines are also commodities to create and format multiple files as Dynamo input parameters:

Creates three copies of the initial table, formats them (and sets them in the same folde as before)

creates a set of full fourier masks and puts them
into the same folder used previously.

shorthand to indicate that
all “seeds” (initial tables,
templates and fmasks)
are in the same folder:

folder_seeds

>>dvput pmulti ­cr 0 ­cs 1 ­ir 0 ­is 1 ­limm 2 ­dim ­32 ­rf 0 ­sym c5 ite_r1 10;

The next line codes all the numerical parameters in this experiment that depart from default values.

angular parameters

In this case (and just to accelerate computations),
 we are not letting particles move, as we want to gauge
the capacity of MRA to induce a classification.
● cr: cone_range (i.e. apertute of cone or orientations)
● cs: cone_sampling (discretization interval)
● ir: inplane_range (azymutal angle, i.e., rotations about the axis)
● is: inplane_sampling

limit of shifts for paticles tune to mode 2:
(measure shifts from the center of the particles)

dimensionality of the particles
Can be used to induce a binning to
accelerate calculations

round 1 will have 10 iterations
(other rounds are initialized to zero)

No multigrid refinement

explicitely apply the c5 symmetry
operator expected on each vertex

But remember that you can intertwin command line with GUI representation at convenience

>>dcp pmulti

in the Wizard for numerical parameters you
can see all available parameters, edit them
and get help on selected parameters

select a parameter
press [?]

ddb pmulti:a:ref=* -m

A handy way to recover results is using the dynamo_db command.
This command allows a wide range of searches and actions on items in
the database associated with a project (automatically generated by Dynamo).

Project name Item to retrieve:
“a” stands for average.

Identifier:
Which references we want to retrieve
(in this case “*”: all of them).
We could have added an iteration identifier.
ddb pmulti:a:ite=10:ref=* -m
 but for the item “average” Dynamo accesses
by default the last available iteration

Command
Dynamo shorthand.
 “db” stands for database.

Query:
What do we want
 to retrieve?

Action:
What do we want Dynamo to do
with the retrieved items?

In this case: send to mapview

Type doc db to see more options of ddb.

You should see something like this:

If you don't like the commandline tools, you can access the data also with GUIs

Select mapview
For visualization

Choose all references

Type the iteration you want ot depict
… or press to find the last available

dcp pcmulti -show

Can we check which particles belong to reference 1?

ddbrowse -p pmulti -ref 1

Possibly our first temptation could be to take a look on the particles themselves.

Calling ddbrowse with a -p flag (“project”)
Automatically selects the refined_table
Found on that project at its last iteration.

It also fetches the right data folder.

Passing explicitely a “ref” also fills the
“restriction” area, telling Dynamo that we are
interested only on those particles marked
as “belonging to reference 1” in the table
(i.e. have the value “1” in column 34”).

Remember that the table by itself would contain
alignment information of ALL the particles against
reference 1, not only of those that finally contribute
to this reference channel.

… but it's kind of difficult to ascertain if this reference is really hitting the original class 2
 (of vertex particles that are known by construction to contain an insertion)

ddb pmulti:rt:ref=1 -v

Can we check the particles that belong into reference 1?

First of all, we want to focus on those particles that actually contribute to the average in reference 1:

Switch on so that only particles in the selection will get depicted!

In the customizable field write 3
 (the column number that marks with “1” the particles actually used
 in an average)
The text “averaged” should appear automatically.

The depiction area should represent now only those particles contributing to the average

but we are still seeing the “tilt” and the “cc” (correlation) of each particle

Tip:
Use these controls in order to produce different figures.
(figure 0 is the tableview window itself)

You should see something like this:

most particles in this reference channel
contain particles In original class 2
(I.e. insertions)

although there are also a few particles that
had been missclassified (they belonged
to the original class 1, without insertions)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

