

Subboxing: extraction of boxes out of subtomograms

What is “subboxing?”

We call “subboxing” the extraction of smaller subvolumes from inside the subtomograms,
using the information about their location and orienation gained in previous alignment
steps.

The set of extracted subbvolumes can be treated as a new data set, potentially showing
some advantages, mainly:

1) Computational speed

 When particles are extracted from tomograms, they are typically cropped out with conservative
 criteria, as it is not always clear which are the actual extents of the particle.
 This might lead to unnecessary increases of the computational burden.

2) Extraction of assymetric subunits

 While symmetry imposition is useful during the first steps of an alignment, the capacity of working
 with the indenpendent subunits might lead to fine improvements in the resolution, and also to
 the obtention of information that might ease the analysis of possible hetereogeneities in the data.

>> dtutorial tsub

As we know, this creates (among other elements):

* A template

* A data set with randomly rotated versions of the template

* A table that codify the alignment parameter of that data set

In this first tutorial we will use subboxing just to reduce size of the data

Let us choose the
coordinate with the mouse:

And now we create a “subboxing folder”:

sidelength of the subbox

subbox center as seen (or clicked) on the template
table required to locate in each
particle the homologous position
to the one defined on the template
(the one passed with flag “­r”)

sidelength of the template
(if it differs from the

sidelength
of the data boxes)

An output folder will be created with different elements for later reference

just for bookkeeping on how the subboxing folder was constructed

In the folder subtest, you have thus a
new description of your data in terms of
a data set (with cropped subparticles) and
a table (that expresses the old table
adapted to the recentering of the particles)

Note that the subboxing is one of the items registered by dsummary

(a higher verbosity would reveal the actual names)

dslices subtest/data z ­j c0 ­t subtest/subbox_table.tbl ­align on

We use the table generated by Dynamo referred to the cropped subboxes

we check now the contents of this subboxing directory

The particles are now smaller
and centered on the spot we
clicked.

They don't look exactly equal
as each one has a different
missing wedge.

 dgallery -d subtest/data -t subtest/subbox_table.tbl -load on;

>> dtutorial t2 ­p pt2

As it is a minor modification of the project, we do it with the light tool dvput, instead of opening
dynamo_project_manager

Now that we know how (simple) subboxing works, we can go further and sketch a further step, where
we see how “subboxing” interacts with

This project will be used to create a coarse approximative solution to the problem in the dataset,
which will be later refined by subboxing.

Already in this project, before doing any subboxing operation, we

Note that this is equivalent to simply typing on the command line:

>> dvput pt2 unfold ­ite_r2 0;

1 – modify ite in round 2 ('ite_r2') to 0

2 – check, save, unfold

ddb pt2:a ­v

We are just computing a
coarse orientation using one
single iteration.

It will thus end very soon, and
we can quickly check that the
average that we get is decent
enough as first approximation:

And we now will set a new project on this by creating a “subboxing” folder as we just saw:

 >> dslices pt2:a ­click r

 coordinates 11,17,28

 ddsubboxing pt2:data 24 ­r [11,17,28] ­st 40 ­t pt2:t:ite=1 ­o subunits;

And we create a subboxing directory based on the data and table of the “coarse” project,
centering the particles on the point that we just clicked:

just a database query for the data folder

and also a database query to access directly
the last (and in this case unique) table in the folder

Now we enter the subboxing folder we just created and we will proceed from there:

cd subunits;

Perhaps a check that everythinh is as we expected it:

dslices data z ­proj * ­t subbox_table.tbl ­align on ­labels tags

Note that we need to pass the size of the template,
as in this tutorial data and template are of different
size (default setting of the tutorial generation)

looks good...

so, we can now create a project
that refines the alignment on this data.

You can do that with the tools that you
already know (project_manager,dvput),
but let us see how to do it from the
command line and using some tools
foreseen for this subboxing technique:

 dv subboxproject -d data -hint refine -s d -t subbox_table.tbl

We can, for instance, create a project ab initio, using the table and the data that we have

generates numerical settings for refinement saves the project in disk, but does not unfold it [this is actually the default]

Of course, the rest of the files (template, masks,...) are missing, and if we check the project we will
get a full list of complaints:

dvsource ../pt2 subboxproject ­modus update ­import volumes;

To populate them, we define this project as refinement projet of the original source project... what actually is!

This order populates the new project subboxproject with the adequate entries of the source project

Note that dvsource is not only applicable in the subboxing settings, but it is a very general tool

We are coming closer to a project that we can execute!
But still we cannot:

forces to run a check before unfolding the project

We have cropped the data, and now the template inherited from the coarse project is too big!

This is just because we used a generic tool for the “sourcing” of the old project... but it's not a problem,
we just inform the project subboxproject that it is a project in a subboxing directory:

we can actually go for a project for very local refinement
with just one round

now, the project will run very radpidly, as it is defined as a local refinement,
and the boxes are small (24 pixels).

As expected, it refines the structure around the assymetric unit.

>>ddb subboxproject:average:ite=[0:4] ­jz *

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

