

Command line: classification

Main goals of this tutorial:

* Classify a data set with PCA.

* Refine the results of a classification.

What do you need to classify a data set?

Basically you need three input elements:

1) Data
 Needs to be formatted as a regular Dynamo data folder.

2) Table
 Here you code the whole metadata:alignment parameters, missind wedge descriptors...
 Usually, such a table is the result of a previous (or concurrent) alignment procedure,
 which might have been run in Dynamo or in other software package and then converted
 into Dynamo table formats.

3) Mask
 (optional)
 To state which voxels define the area of interest in the classification.

In this tutorial we show how to use command line tools to operate on these elemenrts
to create PCA-based classifications

PART I

Creation of synthetic data

(hors d'oeuvre)

In this part we will create a synthetic set of data, table and mask to simulate a real classification
procedure.

In our way we will take some time to stop at several commands and procedures that might be useful
in other contexts.

>> dtutorial;

Create a new folder (mkdir), go there (cd) and let's get started:

This time, we will use the GUI version of the tutorial generation tool:

In the GUI that opens (next slides), we can control the generation of data and tables.

We are interested in a table that aligns the generated data, but NOT perfectly, as
in real life we will not have “perfect” alignment tables.

This is controlled by the parameters “pshift”,”pnarot”,”paxis” (p stays for “perturbation”)
which determines the “approximative” table that we are interested into.

dtutorial will create its own directory and put lots of things there including several tables,
a data set and a mask:

type some name for
the tutorial folder

and create it!

here you control the approximative
table

run a summary after the tutorial runs just to check that things are ok: the tutorial produced two projects:

an alignment project and a ccmatrix project. We could just run this ccmatrix project and it will create a
ccmatrix that can be used for classification... but in this tutorial we rather want to focus on how to create
such projects in the first place, so we just explore the elements that we have in the tutorial

that's a real table with the actual parameters

the approximative table that we can use to create a “realistic” classification:

not used in this tutorial: a “blank” table with alignment parameters set to zero.
typically used to start and alignment project.

>> dtplot tutcc/coarse.tbl ­cl r
>> dtplot tutcc/real.tbl ­cl b

Dynamo > >> dslices tutcc/data x|y|z ­j c2 ­l tags ­lx 0.05 ­ly 0.2 ­dim [4,2]

you can check quickly the data set with :

just shifts the “tag” labels
(for a more esthetic appearance)

put a label with the tag number

shows the projection (j) of two central (c) slices

Dynamo > >> dslices tutcc/data x|y|z ­j c2 ­l tags ­lx 0.05 ­ly 0.2 ­dim [4,2]

rows and columns for depiction
views to show for each particle

Note: if you want to do similar depictions for real data sets (which won't have just eight particles) you might need:
1 select subsets of tags
2 use the -otf flag (“on the fly”, to avoid storing all particles simulatenously in memory)
3 use dgallery instead.

Dynamo > >> dslices tutcc/data ­j *

 or with a more creative:

well, those are the eight particles in the data set... as you see, they are missaligned

also, notice that each particle has a missing wedge:

Dynamo > >> dwedge_estimate tutcc/data/particle_00006.em ­show on

So, before entering the classification itself, we continue playing with the created elements:

Now, we want to check how “approximate” is the approximate table coarse.tbl.

A typical way to explore tables is just by applying them onto the data to produce an average:

>> daverage tutcc/data ­t tutcc/coarse.tbl ­fc on ­o acoarse.em

Let us depict it with mapview (next slide):

>> dmapview acoarse.em

and check that it is a reasonable approximation to the alignment parameters

just for test let us compare this with the average that the real table would produce:

>> daverage tutcc/data ­t tutcc/real.tbl ­fc on ­o areal.em

>> dmapview areal.em ­append on;

 you can see how the coarse table produced a blurrier version of what we would get with the real parameters

ok, now we know how a coarse table looks like and how it approximates the real metadata.

But now, in our tutorial we used only particles on one class... let us create a second tutorial
set with two types of particles, so that we can test later our classification procedures.

From the command line we can run the order:

>> dtutorial tut ­M 8 ­N 8 ­tight on;

which will create the folder tut with 16 particles, 8 in each class.

>> dslices tut/data ­j *

ok, the raw, unaligned particles from both classes look pretty much the same.
In the next part, we will disentangle them with a PCA approach.

PART II

Classifying the data

In this part we will operate a command line classification on the elements (data and table) that we
created in part I

We thus start by creating a ccmatrix for the table, data ans mask combination we produced.

In the simplest syntax of the command dvccmatrix we can just create a project (lets call it pcc)
with those elements:

pcc will just compute the ccmatrix of the data set aligned by the table and restricted to the mask.

Two important notices are:

1 The command dvccmatrix admits many modifications to change computation and execution settings,
 that have been set to zero with this syntax.

2 For illustrative purposes we are going to operate the classification step by step: we comptue by now
 only the ccmatrix, later we will compute the PCA analysis (divided into Xmatrix computation and spectral
 computation: eigenvectors and eigencoordinates) and then the classification itself (by kmeans).

 Note however that dvccmatrix can produce projects that tackle all or several of these steps separately
 with the flags “steps”. For instance we could have typed:

>> dvccmatrix pccall ­t tut/coarse.tbl ­d tut/data ­m tut/mask.em ­steps all

>> dvccmatrix pcc ­t tut/coarse.tbl ­d tut/data ­m tut/mask.em

by default the created project will run in Matlab.

You might prefer to execute it in a system shell for several reasons:
1) you want to keed the current working shell free for interactive work
2) You want to use the multicore capacities of your machines (not accessible through the Matlab version)
3) You are not using the Dynamo -Matlab licence

what you just generated is a project of type “ccmatrix”. You can get operative information on it with
the general dynamo_vpr_info (or dvinfo)

So, we just change the “destination” parameter in our project. we use the ddb command for that:

project to modify
parameter to modify

“write and unfold”

new value

“ddb” can be omitted
in the console

Well, we have a ccmatrix project.

Before launching it, we consider the command dynamo_vpr_ccinfo (dvccinfo), which is very useful to
control in which state is a classification task: what has been done, which elements are available,
how they were computed. Just type the command on the project we created:

>> dvccinfo pcc;

You can also modify other parameters. If you have a multicore machine you can use the parameter
“how_many_processors” (or in shift form “cores”) to divide the task among several processors.

settings as found in project

what has been computed
(nothing in our case)

We can start the computations: we just launch the project in a system shell, different to the one we are
using for our interactive procedure. Of course, Dynamo needs to be activated on that shell/

first you get information about what the data flow in the project...

By default, particles are just aligned before comparing them in pairs.
In real life we might need to use the parameter “ccmatrix_type” to force dynamo to bin them (for speed)
or symmetrize them (for a better SNR)

...and then some execution information...

the “blocks” referred to here are submatrices of the ccmatrix that are computed separately for two reasons:
1 parallelism and
2 memory optimization

In this tutorial both are rather irrelevant, are we have just 16 particles with sidelength of 40. In real life, with certainly more
and possibly bigger particles you might want to use the parameter “ccmatrix_batch” to force the creation of more blocks
each one tackling less particles at at time.

this are does not change:
they are just settings

but we start to have results stored
in the database of the project

>>ddb pcc:ccm ­v

project

(shorthand for) database item“ccmatrix”

we can take a look on the computed matrix with a database query:

action on retrieved object:
 “view”

Note that if you don't like the “ddb” syntax (very efficient, but admittedly requires some habituation)
you can always access database items (i.e., all files related to a project: settings, data, results, intermediate
results) with the desktop command, i.e.

>> ddesktop pcc;

as you see, the matrix does not look very promising:

click here to get the results related to classification tasks currently in the project. In this case, just the ccmatrix is retrieved

... wher

A first attempt with an easy clustering procedure (just Hierarchical Ascending, no PCA)
 does not show a very clear separation:

>> ddendrogram ­ccm pcc:ccm

... so we continue with a full PCA analysis

Having computed a ccmatrix we can move to the next step towards PCA classification.

The first step is the computation of an Xmatrix object. This is actually just and operational
non interesting step. The reason to give the user the possibility of computing it explicitely is
merely technical: An Xmatrix can be really huge (as it contains all available voxels in the data
set), and operating with it might require to chunk it in subblocks that are tractable in the memory.

This is steered with parameter 'MaxMb'. But in our case we can just use the default parameters.

Additionally, we can tell Dynamo to just continue with the computations inside the project, by:

>> dPCA_Xmatrix ­p pcc

again, we can run a dvccinfo on project pcc afterwards to check how things are going:

so, we can now create the PCA (eigenvolumes/eigentable)
and then the class averages (called “subaverages”)

Again, PCA computations might accept different modifications:
- actions on the particles (bin, sym...)
- number of eigenvalues

But we will proceed with the default settings, and proceed inside the project, so we can
simply write:

 >> dPCA -p pcc;

Here it will take some seconds... in real life this can be quite computing intensive, but it will
rarely grow to a bottleneck.

dvccinfo informs us that the PCA elements are indeed in place.

Before proceeding with the classification itself we analyze the obtained elements

>> ddb pcc:eigenvolume:eig=* ­sel my_eigvs

Let us take a look on the eigenvolumes.

An useful procedure is using a database query to dump a set of files into a .sel file
(the .sel file is just a text file that lists other files)

So that now we can take a look on the created eigenvolumes:

>> dslices my_eigvs.sel x|z ­j c2 ­ns true

If you really hate the ddb-style command, remember that you can use other less obscure options
(desktop, vpr_results,ccmatrix_analysis) to access the results of a computation stored
in the database of a project using more intuitive syntax (or graphic interfaces)

The “eigentable” records the components of each particle along each vector.

Scatterplots are normally useful for depictions.
The command line tool for table depiction includes a “profile” called “eigenvalues” for this task:
>> dtplot pcc:eigentable ­pf eigenvalues

... although it fighting a little bit with the interactive tool tableview to get this representation might also prove useful

>> dtview ­t pcc:eigentable;

In any case, the visualziation of both eigenvectors and eigenvalues does not look specially promising
(they rather suggest misalignment issues).

We still proceed with our classification performing a kmeans classification on the PCA coordinates of
the particles.

As in the case of dXmatrix and dPCA, dkmeans can read settings from and write results into a project,
or also accept manual input for specific modifications.

We will let dkmeans use the project to automatize input and output, but specifically request that we want
two clusters.

 >> dkmeans ­p pcc ­n 2 ­reps 100;

The parameter “reps” tells kmeans to repeat the classification 100 times, as the seeds for the classiffication
are randomly generated. We want to get a representative classification.

actually, you see that the classification is not so good:
in the two classes that we construct, one has 11
particles and the other one 5.

But we know we should have 8 and 8 by construction.

Let us first take a look onto the results

By construction in the tutorial, we know that one class gathers “small” particles and the other “big” particles.

This trend is however not clear by inspection of the two subaverages, which rather appears to have classified
particles according to slight orientational changes: as we suspected, we get misalignment issues.

>> ddb pcc:subaverage:sref=* ­m

.....so ... what can we do?

We can make our classification more robust by using more information.

If we know (or want to use the hypothesis) that particles have a C8 symmetry, we can use that data
all over the classification.

This time we will produce the classification in one step, as we are already familiar with the pipeline:

Changing the classification parameters

dvccmatrix pccs ­t tut/coarse.tbl ­d tut/data ­m tut/mask.em
 ­s cu ­sym c8 ­destination system_omp ­steps all

just to “save” the project in modus “cu”, meaning:
- “check” (stops if errors are found)
- and “unfold” (creates an project ready for execution)

uses symmetry c8
we let the project compute at once:
- ccmatrix
- PCA_Xmatrix
- PCA (eigenvalues, eigenvectors
 and eigentable)
- kmeans classification

If the previous order worked, you can now execute the produced execution script in a system shell

Did the use of syymmetry give a better classification?

A first hint is that the matrix-based clustering can now give a better (although not really definitory) result:

 >> ddendrogram ­ccm pccs:ccm ­p 4

... but we would expect that PCA should give better results than simple clustering
 so that let us go for it

The resulting clustering looks better:

>> dtplot pccs:eigentable ­pf eigenvalues

... well, the automated profile “eigenvalues” in dtplot does not give a very visual depiction...
 you might want to explore the other parameters of dtplot or use dtview for a more aesthetic depiction

Now it looks like the classification made a better job:
A class appear blurrier than the other , but the main features can be distinguished

 >> dmapview pccs:subaverage:sref=*

you can check this more accurately with the C and N markers in mapview by clicking on screen:

project all slides along z
activate the markers

Part III

“project sourcing”: Refining a classification

An obvious thing to do would be to align the classes separately.

In this part we see how to create alignment projects that fulfill this task in an automated way.

Creating alignment projects ab initio can be tedious.

“Sourcing” is one of the techniques to construct new projects from results or settings other “source” projects.

In our case, we can just write:

 >>dvsource pccs prefine ­import all ­srefs [1,2]

Informs Dynamo that we want all the seed items
 in the target project derived from the source project

target project that
will get created

“source” project that
 we want to refine.

“srefs” is the parameter telling Dynamo that we want to refine a classification.

In our original project “pccs” we were analysing a single reference channel, and we produced there
two “subreferences” (which we can assimilate to the concept of “class averages”).

With this syntax, Dynamo will know that we want to

1) Use the subaverages in the original source project aas initial templates in target project
 (also , “subtables” will be used as initial tables, etc)

2) We asked to continue the refinement of two subreferences in a single target alignment project
 Thus, this target alignment project will be of multireference type.

Note this screen capture from the command dvsource, informing which items
from the database of the “source” project have landed as which items
in the database of the “target” alignment project.

Note that a “source” project can be any kind of project: alignment, classification,
single or multireference....

Now prefine has the correct “seed” files (data, templates, etc, etc) but we still need to input the correct
numeric settings (angles, symmetries, etc) because the project has been created with default settings.

In this case, we now that we just want to slightly refine the alignment parameters in the table: for this task
the provided parameters are an overkill: the project will be way too time consuming.

You can check the parameters with dvinfo

You probably now the GUI dynamo_project_manager already, where you can easily modify an existing
project. But in this tutorial; we use the command line tools for this task

 >> dvput prefine cd ­ite [2,0,0,0,0,0,0];

 >> dvput prefine cu ­cr 20 ­cs 5 ­ir 20 ­is 5 ­sym c8 ­rff 2 ­destination system_omp;

Now we modify the angular settings, the symmetrization, a multigrid parameter and the running environment:

...and check and unfold
project prefine after modification

note that dvput:
1) understands also the shortforms of the parameters
 i.e. “cr” gets translated into “cone_range”
2) assumes iteration 1 as default

The two averages appear now much better defined

>> ddb pccs_refine:a:ref=* ­m

If we symmetrize the representation:

... the size effects are easier to recognize...

you can for instance check
 the intensity profiles along
homologous regions

Note the settings for viewing:
slice 16, viewing dirction y, etc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

