W

Command line: classification

Main goals of this tutorial:
* Classify a data set with PCA.

* Refine the results of a classification.

What do you need to classify a data set?

Basically you need three input elements:

1) Data
Needs to be formatted as a regular Dynamo data folder.

2) Table
Here you code the whole metadata:alignment parameters, missind wedge descriptors...
Usually, such a table is the result of a previous (or concurrent) alignment procedure,
which might have been run in Dynamo or in other software package and then converted
into Dynamo table formats.

3) Mask
(optional)
To state which voxels define the area of interest in the classification.

In this tutorial we show how to use command line tools to operate on these elemenrts
to create PCA-based classifications

PART |

Creation of synthetic data

(hors d'oeuvre)

In this part we will create a synthetic set of data, table and mask to simulate a real classification
procedure.

In our way we will take some time to stop at several commands and procedures that might be useful
in other contexts.

Create a new folder (mkdir), go there (cd) and let's get started:

This time, we will use the GUI version of the tutorial generation tool:

>> dtutorial;

In the GUI that opens (next slides), we can control the generation of data and tables.

We are interested in a table that aligns the generated data, but NOT perfectly, as
in real life we will not have “perfect” alignment tables.

This is controlled by the parameters “pshift”,”pnarot”,”paxis” (p stays for “perturbation”)
which determines the “approximative” table that we are interested into.

dtutorial will create its own directory and put lots of things there including several tables,
a data set and a mask:

here you control the approximative
table

type some name for
the tutorial folder

Folder does not exist

and create it!

Session Edit View Bookmarks Settings Help

Dynamo = == dsummary ET
"dsummary" references source command "summary"

Executing: summary

Gathering a summary of Dynamo contents in folder "."

projects
- multireference
- ccmatrix
data folders
subboxing folders
bundles
compaction folders
sequence folders
tutorial folders

=D D @ @D =@M

[ok] summary

Exiting: summary

Dynamo = == D

]| @ shell

run a summary after the tutorial runs just to check that things are ok: the tutorial produced two projects:

an alignment project and a ccmatrix project. We could just run this ccmatrix project and it will create a
ccmatrix that can be used for classification... but in this tutorial we rather want to focus on how to create
such projects in the first place, so we just explore the elements that we have in the tutorial

the approximative table that we can use to create a “realistic” classification:

ession Edit View Bookmarks Settings Help

Dynamo > => 15 tutcc - |
Passing to system...

ok

coarse.tbl mask classification.em

data mask.em

fmask.em original template.em

folder multireference real.tbl

info tutorial parameters.doc templatg.em
initial.tbl

Dynamo\ > >> D

] Shell

that's a real table with the actual parameters

not used in this tutorial: a “blank” table with alignment parameters set to zero.
typically used to start and alignment project.

>> dtplot tutcc/coarse.tbl -cl r
>> dtplot tutcc/real.tbl -cl b

Eile

NEade|RO@E|0E

you can check quickly the data set with :

Dynamo > >> dslices tutcc/data -j *

or with a more creative:

Dynamo > >> dslices tutcc/data x|y|z -j ¢2 -1 tags -1x 0.05 -1y 0.2 -dim [4,2]

)] rows and columns for depiction
views to show for each particle .
put a label with the tag number L

T~ v

Dynamo > >> dslices tutcc/data x|y|z|-j c2| -1 tags ~1x 0.05 -1y 0.2 +dim [4,2]

shows the projection (3) of two central (c) slices ?

just shifts the “tag” labels
(for a more esthetic appearance)

Note: if you want to do similar depictions for real data sets (which won't have just eight particles) you might need:

1 select subsets of tags
2 use the -otf flag (“on the fly”, to avoid storing all particles simulatenously in memory)

3 use dgallery instead.

well, those are the eight particles in the data set... as you see, they are missaligned

also, notice that each particle has a missing wedge:

Dynamo >

>> dwedge estimate

tutcc/data/particle 00006.em -show

on

So, before entering the classification itself, we continue playing with the created elements:
Now, we want to check how “approximate” is the approximate table coarse.tbl.

A typical way to explore tables is just by applying them onto the data to produce an average:

>> daverage tutcc/data -t tutcc/coarse.tbl -fc on -o acoarse.em

Let us depict it with mapview (next slide):

>> dmapview acoarse.em

and check that it is a reasonable approximation to the alignment parameters

DR

L
E
L

4

|

4] [E]]

u..:u\{.awml.\.wﬂ....\h.
s uw.....wm %m.....__. o}
m.w{.dw‘ G
iolelelo

. .E
i.ﬂ uﬁ.

EN IRERD
L1 Hdd D

|

just for test let us compare this with the average that the real table would produce:

>> daverage tutcc/data -t tutcc/real.tbl -fc on -o areal.em

>> dmapview areal.em -append on;

Opening mapview

you can see how the coarse table produced a blurrier version of what we would get with the real parameters

ok, now we know how a coarse table looks like and how it approximates the real metadata.

But now, in our tutorial we used only particles on one class... let us create a second tutorial
set with two types of particles, so that we can test later our classification procedures.

From the command line we can run the order:

>> dtutorial tut -M 8 -N 8 -tight on;

which will create the folder tut with 16 particles, 8 in each class.

>> dslices tut/data -j *

b
ty
r

@
% 2
O
@

by

=
&
2

C
2
Q
3

ok, the raw, unaligned particles from both classes look pretty much the same.
In the next part, we will disentangle them with a PCA approach.

PART Il

Classifying the data

In this part we will operate a command line classification on the elements (data and table) that we
created in part |

We thus start by creating a ccmatrix for the table, data ans mask combination we produced.

In the simplest syntax of the command dvccmatrix we can just create a project (lets call it pcc)
with those elements:

>> dvccmatrix pcc -t tut/coarse.tbl -d tut/data -m tut/mask.em

pcc will just compute the ccmatrix of the data set aligned by the table and restricted to the mask.
Two important notices are:

1 The command dvccmatrix admits many modifications to change computation and execution settings,
that have been set to zero with this syntax.

2 For illustrative purposes we are going to operate the classification step by step: we comptue by now
only the ccmatrix, later we will compute the PCA analysis (divided into Xmatrix computation and spectral
computation: eigenvectors and eigencoordinates) and then the classification itself (by kmeans).

Note however that dvccmatrix can produce projects that tackle all or several of these steps separately
with the flags “steps”. For instance we could have typed:

>> dvccmatrix pccall -t tut/coarse.tbl -d tut/data -m tut/mask.em -steps all

what you just generated is a project of type “ccmatrix”. You can get operative information on it with
the general dynamo vpr_ info (or dvinfo)

valid unfolded project : YES

"destination"” : matlab

"how many processors" 01

"cluster header" : cluster header.sh(NOT FOUND)

by default the created project will run in Matlab.

You might prefer to execute it in a system shell for several reasons:

1) you want to keed the current working shell free for interactive work

2) You want to use the multicore capacities of your machines (not accessible through the Matlab version)
3) You are not using the Dynamo -Matlab licence

So, we just change the “destination” parameter in our project. we use the ddb command for that:

parameter to modify

project to modify “write and unfold”
“ddb” can be omitted
in the console
Session Edit View | Bookmar Settings Help

Dynamo > =>> ddb pcc:destination wu system omp
"ddb" references source command "db"

Executing: db

Parsing 3 arguments

I[Modifying project "pcc”

old value : matlab

new value : system_omp

Dynamo was not able to set execution permissions on the execution script
You may need to do it manually with chmod u=rwx pcc.exe

Unfolding completed. Project updated and ready for execution:

pcc.exe

Exiting: db

Dynamo = ==
Dynamo > >> D

new value

E]| Shell

You can also modify other parameters. If you have a multicore machine you can use the parameter
“how_many_processors” (or in shift form “cores”) to divide the task among several processors.

Well, we have a ccmatrix project.

Before launching it, we consider the command dynamo_vpr ccinfo (dvccinfo), which is very useful to
control in which state is a classification task: what has been done, which elements are available,
how they were computed. Just type the command on the project we created:

>> dvccinfo pcc;

Session Edit View Bookmarks Settings Help

Dynamo > == dvccinfo pcc
"dvccinfo” references source command "wpr_ccinfo”

Executing: wpr_ccinfo

Parsing 1 arguments

Project: "pcc" (iteration: 1)
project type : ccmatrix

Parameters in round 1

ccmatrix 1
ccmatrix_type : align ;
ccmatrix batch : 128
Amatrix 0
Xmatrix_maxMb :lee
PCA]

PCA neigs 4
kmeans 0
kmeans_ncluster 2
kmeans ncoefficients : 3

Computed files

tags file : not available

ccmatrix file : not available

ccmatrix actions : undefined

¥matrix (blocks) : no blocks of Xmatrix available
Eigenvolumes : not available

eigentable : not available

Subaverages : not available

Exiting: wvpr_ccinfo

Dynamo = > D

) s

[]| & shell

settings as found in project

what has been computed
(nothing in our case)

We can start the computations: we just launch the project in a system shell, different to the one we are
using for our interactive procedure. Of course, Dynamo needs to be activated on that shell/

first you get information about what the data flow in the project...

[casdanie@cina-hpwsBl testccls ./pcc.exe
Reading the card ./pcc/cards/ite 0081/card iteref ref 881 ite B081.card
sending to system order dynamo_ccmatrix_compute ./pcc/cards/ite B001l/card_iteref
ref BO1 ite GOO1.card O
Initializing MATLAB Compiler Runtime wversion 7.14
Starting Up:"MCR libraries starting dynamo ccmatrix compute. [kernel functionl®
CC matrix computations for ite 1, ref 1
action chain read from virtual project: (round 1}
align ;
IMASK (classification)
cidelength 48, 28671 active voxels (45%)
stored in the database as "mask ccmatrix”
TAGS
Identity and ordering of particles appearing in the ccmatrix
total in table :16
in disk 116
actually used :16
Stored as database item "tags_ccmatrix"
ACTIONS OM PARTICLE
align ;
Stored as data

ittem "actions ccmatrix"

Starting ccmatrix computations:

E]| Shell

By default, particles are just aligned before comparing them in pairs.
In real life we might need to use the parameter “ccmatrix_type” to force dynamo to bin them (for speed)

or symmetrize them (for a better SNR)

...and then some execution information...

the “blocks” referred to here are submatrices of the ccmatrix that are computed separately for two reasons:
1 parallelism and
2 memory optimization

In this tutorial both are rather irrelevant, are we have just 16 particles with sidelength of 40. In real life, with certainly more

and possibly bigger particles you might want to use the parameter “ccmatrix_batch” to force the creation of more blocks
each one tackling less patrticles at at time.

Session Edit View Bookmarks Settings Help

Starting ccmatrix computations:

A total of 1 blocks will be distributed among 1 processors.
Each block will occupy up to 375.00 Mb in memory

Computing block (1,1) with block number ® assigned to processor 0... took 5.13 seconds (46.88 Mb)
Rough estimation for total computing time expected in processor B: 55
matrix contribution from this processor (8) written in file ./pcc/temp/ite 00881/intermediate results/proc_c
ontribution ccmatrix proc 00000 ref G011 ite BEGLl.em
MO DISPLAY

result: 8@ (hopefully @) from submitting dynamo_ccmatrix_compute to system from OpenMP wrapper program dy
namo ccmatrix compute omp.cc

OMP finished. All computations done.
Initializing MATLAB Compiler Runtime version 7.14
Starting Up:"MCR libraries starting dynamo ccmatrix assemble. [kernel function]”

reading contribution ./pcc/temp/ite B@B81l/intermediate results/proc_contribution ccmatrix _proc_ 660808 ref 801
_ite 00081.em to the cross correlation matrix

CCMATRIX:
stored as "ccmatrix" in the database, file:
JSpec/results/ite B801/ccmatrix/comatrix_ref 001 ite 8881.em

Assembling of cross correlation matrix finished at 15-Aug-2012 12:33:08
Actions related to ccmatrix computation and analysis in this round:
align ;

Done with ccmatrix-related computations of project pcc, ref 1 ite 1,

MO DISPLAY
[casdanie@cina-hpwsBl testccl$ []

[]| & shell

Session Edit View Bookmarks Settings Help

Executing: wpr_ccinfo

Parsing 1 arguments

Project: "pcc" (iteration: 1)
project type ¢ ccmatrix

Parameters in round 1 \
1

comatrix

ccmatrix_type : align ;
ccmatrix_batch . 128
Xmatrix H]
Xmatrix_maxMb : o 1eoe
PCA H
PCA_neigs 4
kmeans <]
kmeans_ncluster 2
kmeans_ncoefficients : 3

Computed files

tags file ;16 tags
ccmatrix file ;16 X 16
ccmatrix actions : align ;
xmatrix (blocks) : no blocks of Xmatrix available

[Attention]: 16 tags registered in file, but the Xmatrix blocks covers only 0

You will not be able to run a PCA until you create a suitable Xmatrix.

As a ccmatrix already exists, you can just switch on the parameter "reuse ccm"
and run dynamo_vpr_ccmatrix on this project.

Eigenvolumes : not available
eigentable : not available
Subaverages : not available

Exiting: wpr_ccinfo

Dynamo > >> D [J

["]| & shell

this are does not change:
they are just settings

but we start to have results stored
in the database of the project

we can take a look on the computed matrix with a database query:

>>ddb pcc:ccm -v

0N

project
action on retrieved object:
“VieWH

(shorthand for) database item“ccmatrix”

as you see, the matrix does not look very promising:

Note that if you don't like the “ddb” syntax (very efficient, but admittedly requires some habituation)
you can always access database items (i.e., all files related to a project: settings, data, results, intermediate
results) with the desktop command, i.e.

>> ddesktop pcc;

Jpecfresults fite_0001/ccmatrix/ccmatrix_ref_001_ite_0001.em

click here to get the results related to classification tasks currently in the project. In this case, just the ccmatrix is retrieved

A first attempt with an easy clustering procedure (just Hierarchical Ascending, no PCA)
does not show a very clear separation:

>> ddendrogram -ccm pccC:ccm

Eile

Ugde

T IEE

0.6F T T T T T T T T T T T T T T T T =

04 - -

03 -

0z L ’7—‘ _

... SO we continue with a full PCA analysis

Having computed a ccmatrix we can move to the next step towards PCA classification.

The first step is the computation of an Xmatrix object. This is actually just and operational

non interesting step. The reason to give the user the possibility of computing it explicitely is
merely technical: An Xmatrix can be really huge (as it contains all available voxels in the data
set), and operating with it might require to chunk it in subblocks that are tractable in the memory.

This is steered with parameter '‘MaxMb'. But in our case we can just use the default parameters.

Additionally, we can tell Dynamo to just continue with the computations inside the project, by:

>> dPCA Xmatrix -p pcc

PCA_Xmatrix

Memory to allocate for Xmatrix object: 3.50 Mb

¥matrix block number #1. 1 particles read and processed 1in 0.83 seconds.

5till processing 15, should take 12.49 seconds
Warning writing .em file ./pcc/temps/ite 0001/Xmatrix ref 001 ite 0001.em, empty obje
Xmatrix stored in 1 blocks as ./pcc/temp/ite 0001/Xmatrix_ref 001 ite 8001 block_*.

[ok] PCA_Xmatrix completed

again, we can run a dvccinfo on project pcc afterwards to check how things are going:

Session Edit View Bookmarks Settings Help

Computed files

tags file : 16 tags

ccmatrix file : 16 X 16

ccmatrix actions : align ;

Xmatrix (blocks) : 1 blocks

* block 1 : 16 tags X 28671 voxels

Eigenvolumes : not avallable

eigentable : not available

Subaverages : not avalilable

Exiting: wpr_ccinfo

so, we can now create the PCA (eigenvolumes/eigentable)
and then the class averages (called “subaverages”)

Again, PCA computations might accept different modifications:
- actions on the particles (bin, sym...)
- number of eigenvalues

But we will proceed with the default settings, and proceed inside the project, so we can
simply write:

>> dPCA -p pcc;

Session Edit View Bookmarks Settings Help

Executing: PCA

Parsing 2 arguments

PCA

diagonalizing the CC-matrix
finished diagonalizing the CC-matrix
writing eigenvalues to file ./pcc/results/ite 0001/ccmatrix/eigenvalues ref 001 ite 0001.txt
Expecting Xmatrix files with pattern ./pcc/temp/ite B001/Xmatrix_ref 8081 ite 8881.em
Using the Xmatrix to compute the eigenvolumes
writing eigenvolume inteo file ./pcc/results/ite 0001/ccmatrix/eigenvolume_ref 061 ite G601 _eig
_01l.em
Computing "eigentable” for 16 tags. Please wait...
Eigencoefficients of 1 particles done in 1.22 seconds.
5till processing 15, should take 18.28 seconds (18s)
writing eigentable into file ./pcc/results/ite 0001/ccmatrix/eigentable ref 061 ite G661.tbl

[ok] PCA completed

K10 B

Here it will take some seconds... in real life this can be quite computing intensive, but it will
rarely grow to a bottleneck.

Emeans nCoeTT1C1lents o 3

Computed files

tags file : 16 tags
ccmatrix file : 16 X 16
ccmatrix actions : align ;
¥matrix (blocks) : 1 blocks
* block 1 : 16 tags X 28671 voxels
Eigenvolumes : 10 eigenvolumes
* eig #1 D40 X 408 X 40
eigentable : 16 particles X 50 columns (10 eigencomponents)
Subaverages : not available

dvccinfo informs us that the PCA elements are indeed in place.

Before proceeding with the classification itself we analyze the obtained elements

Let us take a look on the eigenvolumes.

An useful procedure is using a database query to dump a set of files into a .sel file
(the .sel file is just a text file that lists other files)

>> ddb pcc:eigenvolume:eig=* -sel my eigvs

So that now we can take a look on the created eigenvolumes:

>> dslices my eigvs.sel x|z -j c¢2 -ns true

If you really hate the ddb-style command, remember that you can use other less obscure options
(desktop, vpr results,ccmatrix analysis) to access the results of a computation stored
in the database of a project using more intuitive syntax (or graphic interfaces)

The “eigentable” records the components of each particle along each vector.

Scatterplots are normally useful for depictions.
The command line tool for table depiction includes a “profile” called “eigenvalues” for this task:

>> dtplot pcc:eigentable -pf eigenvalues

Eile

g d @

2R O@EE| 0

0.5 —

col 43 (eigd)
=
!

0.2

0
1 col 41 {eigl)

0.5

col 42 (eige)

... although it fighting a little bit with the interactive tool tableview to get this representation might also prove useful

>> dtview -t pcc:eigentable;

In any case, the visualziation of both eigenvectors and eigenvalues does not look specially promising
(they rather suggest misalignment issues).

We still proceed with our classification performing a kmeans classification on the PCA coordinates of
the particles.

As in the case of dXmatrix and dPCA, dkmeans can read settings from and write results into a project,
or also accept manual input for specific modifications.

We will let dkmeans use the project to automatize input and output, but specifically request that we want
two clusters.

>> dkmeans -p pcc -n 2 -reps 100;

The parameter “reps” tells kmeans to repeat the classification 100 times, as the seeds for the classiffication
are randomly generated. We want to get a representative classification.

Deleting previous subaverages:
./pcc/results/ite_0001/ccmatrix/subaverage_i
./pcc/results/ite_0001/ccmatrix/subaverage_i
Going for subaverage associated to (new) mer
Output will be written in ./pcc/results/ite
fmask compensation method: "table"

Table contained 11 particles; averaging 11

11,12,60,77,88,95,97,104,131, 154,157,

Computing relative weights of fourier compon
applying compensation of missing wedge/pyram
Going for subaverage associated to (new) mer
ODutput will be written in ./pcc/results/ite
fmask compensation method: "table"

Table contained 5 particles; awveraging 5 ta

42,49 ,61,87,118,
Computing relative weights of fourier compon
applying compensation of missing wedge/pyram

done with subaverages

[ok] kmeans completed

actually, you see that the classification is not so good:
in the two classes that we construct, one has 11
particles and the other one 5.

But we know we should have 8 and 8 by construction.

Let us first take a look onto the results

>> ddb pcc:subaverage:sref=* -m

-
. .
W

o0

|20 00
RO

~lelelo

B0 S

™

2000

Clelelsl

£
o
o
9,

" 4o
Q00
0o
SR,

S0 S| O

(209G

By construction in the tutorial, we know that one class gathers “small” particles and the other “big” particles.

This trend is however not clear by inspection of the two subaverages, which rather appears to have classified
particles according to slight orientational changes: as we suspected, we get misalignment issues.

..... SO ... what can we do?

Changing the classification parameters

We can make our classification more robust by using more information.

If we know (or want to use the hypothesis) that particles have a C8 symmetry, we can use that data
all over the classification.

This time we will produce the classification in one step, as we are already familiar with the pipeline:

dvccmatrix pccs -t tut/coarse.tbl -d tut/data -m tut/mask.em
-s cu -sym c8 -destination system omp ~-steps all

uses symmetry c8

we let the project compute at once:

- ccmatrix

- PCA_Xmatrix

- PCA (eigenvalues, eigenvectors
and eigentable)

- kmeans classification

just to “save” the project in modus “cu”, meaning:
- “check” (stops if errors are found)
- and “unfold” (creates an project ready for execution)

If the previous order worked, you can now execute the produced execution script in a system shell

Did the use of syymmetry give a better classification?

A first hint is that the matrix-based clustering can now give a better (although not really definitory) result:

>> ddendrogram -ccm pccs:ccm -p 4

File Edit View |Insert Tools Desktop Window Help L]

NEBL | MAROUDEL- || 0B |n D

original comatrix reordered comairix

... but we would expect that PCA should give better results than simple clustering
so that let us go for it

The resulting clustering looks better:

>> dtplot pccs:eigentable -pf eigenvalues

0.8
0.6
04

0.2

col 43 (eigd)

-0z

12 -mz col 42 (eig2)

caol 41 {eigl)

... well, the automated profile “eigenvalues” in dtplot does not give a very visual depiction...
you might want to explore the other parameters of dtplot or use dtview for a more aesthetic depiction

BIEEE

*

>> dmapview pccs:subaverage:sref

O O QG DG

A class appear blurrier than the other , but the main features can be distinguished

Now it looks like the classification made a better job:

o 1[a

o 0o 0o oo oo 0000

© 0|0 0|0 00 0|

£ |

%r

you can check this more accurately with the C and N markers in mapview by clicking on screen:

activate the markers
project all slides along z

Part Il

“project sourcing”: Refining a classification

An obvious thing to do would be to align the classes separately.

In this part we see how to create alignment projects that fulfill this task in an automated way.

Creating alignment projects ab initio can be tedious.

“Sourcing” is one of the techniques to construct new projects from results or settings other “source” projects.

In our case, we can just write:

“source” project that target project that Informs Dynamo that we want all the seed items
will get created in the target project derived from the source project

we want to refine. \ L %

>>dvsource pccs prefine -import all |-srefs [1,2]

“srefs” is the parameter telling Dynamo that we want to refine a classification.

In our original project “pccs” we were analysing a single reference channel, and we produced there
two “subreferences” (which we can assimilate to the concept of “class averages”).

With this syntax, Dynamo will know that we want to

1) Use the subaverages in the original source project aas initial templates in target project
(also , “subtables” will be used as initial tables, etc)

2) We asked to continue the refinement of two subreferences in a single target alignment project
Thus, this target alignment project will be of multireference type.

Importing "subtable” from source to be uwsed as "table initial" in target

source: "subtable" ite:1 ref:1 sref:1 --» +target: "table initial" ref:1
. copied
source: "subtable" 1ite:1 ref:1 sref:2 --» +target: "table_initial” ref:2
. copied

Importing "subaverage" from source to be used as "template initial" in target

source: "subaverage" 1ite:1 ref:1 sref:1 --> target: "template initial"” ref:1
. copied
source: "subaverage" 1te:1 ref:1 sref:2 --= target: "template initial" ref:2
. copied

Importing "subfmask" from source to be used as "fmask ipitial" in target

source: "subfmask"” 1ite:1 ref:1 sref:1 --> target: "fmask_initial" ref:1
. copled
source: "subfmask" ite:1 ref:1 sref:2 --» target: "fmask initial" ref:2
. copied

Note this screen capture from the command dvsource, informing which items
from the database of the “source” project have landed as which items
in the database of the “target” alignment project.

Note that a “source” project can be any kind of project: alignment, classification,
single or multireference....

Now prefine has the correct “seed” files (data, templates, etc, etc) but we still need to input the correct
numeric settings (angles, symmetries, etc) because the project has been created with default settings.

In this case, we now that we just want to slightly refine the alignment parameters in the table: for this task
the provided parameters are an overkill: the project will be way too time consuming.

You can check the parameters with dvinfo

B e T A
SETTINGS: summary

DYMAMO PARAMETER : round 1 round 2 round 3 round 4 round 5

iter o s s s s s
“cone_range® : 0.0 2000 10,8 50 1.0
“cone_sampling” ¢ 150 10,0 5.0 2.6 0.5
“inplane_range” ot 0.0 200 108 5.0 1.0
“inplane_sampling” : 150 10,0 5.0 2.6 0.5
"hight T T T T 1

You probably now the GUI dynamo project manager already, where you can easily modify an existing
project. But in this tutorial; we use the command line tools for this task

>> dvput prefine cd -ite [2,0,0,0,0,0,07;

Dynamo > => dvput prefine c¢d -ite [2,0,0,08,0,0,0];
"dvput" references source command "vpr_put”

Executing: wpr put
Expanding:
ite
[modify] flag #1: "ite rl1" (wvalid round project parameter)
[modify] value #1: 2 (numeric)
[modify] flag #2: "ite r2" (wvalid round project parameter)
[modify] value #2: 0 (numeric)
[modify] flag #3: "ite r3" (valid round project parameter)
[modify] value #3: 0 (numeric)
[modify] flag #4: "ite r4" (valid round project parameter)
[modify] value #4: 0 (numeric)
[modify] flag #5: "ite r5" (wvalid round project parameter)
[modify] value #5: 0 (numeric)
[modify] flag #6: "ite r6" (walid round project parameter)
[modify] value #6: 0 (numeric)
[modify] flag #7: "ite r7" (valid round project parameter)
[modify] value #7: 0 (numeric)
ok, project "prefine"” seems safe enough.

Now we modify the angular settings, the symmetrization, a multigrid parameter and the running environment:

i i

>> dvput prefine |cu|-cr 20 -cs 5 -ir 20 -is 5 -sym c8 -rff 2| -destination system omp;

/V

...and check and unfold note that dvput:
project prefine after modification 1) understands also the shortforms of the parameters
i.e. “cr” gets translated into “cone_range”

2) assumes iteration 1 as default

Session Edit View Bookmarks Settings Help

Dynamo =
=> dvput prefine cu -cr 20 -cs 5 -1ir 20 -is 5 -sym ¢8 -rff 2 -destination system omp;
"dvput" references source command "wvpr_put”

Executing: wvpr_ put

[modify] flag #1: "cone_range_rl" (valid round project parameter)

[modify] value #1: 20 (numeric)
[modify] flag #2: "cone sampling rl1" (wvalid round project parameter)
[modify] value #2: 5 (numeric)

[modify] flag #3: "inplane range rl1" (wvalid round project parameter)
[modify]l value #3: 28 (numeric)

[modify] flag #4: "inplane sampling rl1" (valid round project parameter)
[modify] value #4: 5 (numeric)

[modify] flag #5: "sym rl" (valid round project parameter)

[modify] value #5: c8 (char)

[modify] flag #6: "refine factor rl1" (wvalid round project parameter)
[modify] value #6: 2 (numeric)

[modify] flag #7: "destination” (valid project parameter)

[modify]l value #7: system omp (char)

The two averages appear now much better defined

>> ddb pccs refine:a:ref=* -m

Exporting gray map to a
You can use the Matlab 1
annotate, edit, etc.)

If we symmetrize the representation:

-
'

0C
D

GIE

b b

GIC

.! i:r

0L
D

g

¥

¥ |9

CIC

[

81y

¢

|

B
s

|

&

B
=

[
DL

... the size effects are easier to recognize...

DRATEH

2l w2l [0y

a2 4

| o
Q-F-ﬂ

you can for instance check
the intensity profiles along
homologous regions

!I-F-I!

n—FJ

Note the settings for viewing:
slice 16, viewing dirction y, etc T anlg
L2 Nzl D

cl ull
0 I — Y
I -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

