

Command line functionalities:
 express tutorial

Command line tools

* Sometimes they are the only option:

 - GUIs can become too slow in remote systems.

 - GUIs cannot cover the whole flexibility of the environment.

* Clearer insight on the underlying workflows

* Requirement for own developments (plugins, scripts,...)

* Faster operation

 - ... once you are familiar with syntax and commands

After a smooth learning curve

What is the “command line”?

1- The Matlab shell
 A regular Matlab shell, assuming of you course that
 a) you have activated Dynamo)
 b) you have a Matlab license (no further toolboxes are strictly required)

2- The Dynamo console
 Completely independent on Matlab licenses (but needs the free MCR libraries installed)

you have two options, which are equivalent for the purposes of this tutorial)

Notes on
the Dynamo console:

1- opens with
 dynamo x
 after you activate Dynamo
 in your system

2- Can take a while when
 opening (as you are
 waking up Matlab and
 Dynamo)

3- The first commands run
 from the console while
 also need some time to
 start up.

Syntax basics

Functional syntax:

 - Typical Matlab syntax.
 - Valid only in Matlab prompts

 EXAMPLE (abstract example: do not type it right now!)

 volsym = dynamo_sym(my_vol,'c1','fmask',my_fmask);

String syntax:

 - Typical Unix-like syntax.
 - Valid both in Matlab prompts and in Dynamo standalone consoles:

 EXAMPLE:

 dsym vol.em c1 ­fmask fmask.em ­ws volsym;

Most Dynamo commands can be expressed in two syntax types:

volsym = dynamo_sym(my_vol,'c1','fmask',my_fmask);

Each command has its own syntax:

get particular information with:
help dsym [command line help]
doc dsym [Matlab help browser if working in Matlab
 /Dynamo help browser if working in the Dynamo console]
ddoc dsym [Dynamo help browser]

output to command line:

a variable will be created
in the workspace of Matlab

In this case, the part of the help describing the
syntax tells you that the two first positions
are reserved for:
* the volume and
* the symmetry operator
(in this order).

everything else in the right hand side
are couples of Parameter / Value
(in arbitrary order):

'fmask' is the name of the parameter
my_fmask is the value we pass to this parameter

dsym vol.em c1 ­fmask fmask.em ­ws volsym;

String notation is similar:

but notice:

all the inputs are strings by default:
you don't need the quote notation ('c1','fmask',etc)

Natural input objects are filenames.

You can still pass variable names (preceded by @)
but it is not really comfortable.

there isn't a left hand side any more:
the output is controlled by Parameter/Values

In this case 'ws' will create the variable 'volsym' in the workspace,
exactly as in functional notation case.

So let'us play a little with simple objects.

Create a new directory (say, 'testcommands') and go there:

>> mkdir testcommands;
>> cd testcommands;

We now explore the contents of the directory (from the Dynamo point of view)

>> dsummary;

This command looks for typical objects created during Dynamo sessions.
The output that you should get (depending on version) is pasted in the next slide:
We just started working, so it is nothing there yet.

However, this simple command tends to be very useful when visiting back your work
after a couple of days.

 do not worry about “subboxing” and “bundles”, and let us move forward

Note:
the “Executing” and “Exiting” messages appear only in the Dynamo console,
not when working directly on a Matlab shell.

dtutorial test ­p ptest

So let us create some data to start playing:

A folder with files to define easily all elements
 of a subtomogram averaging experiment:

we simultaneously request (“-p”) the creation of a project arbitrarily called “ptest”,
which will be fed with the files generated inside the folder “test”

... you will get a lot of on-screen information about what is happening...-

... when it is done, if you run again the summary command:

some entities appear: two “projects” and one “tutorial folder”

you can activate a deeper level of detail as second argument of dsummary

They are [normally] just folders, visible through regular ls/dir actions:

but summary categorizes everything within the Dynamo framework.

Other commands allow you to focus on specific categories:
projects, data, bundles, subboxing, tutorials

Type for instance:
>> dprojects

You get a list of available projects.

Note that dtutorial actually produced two projects:
ptest is a “regular” project for alignment of a data set.

ccmatrix_ptest is a project that targets a classification (by computing a ccmatrix)

Likewise for the tutorial objects. Type
>> tutorials

the list generated by tutorials just informs on the created particles (M and N) and the companion project

“tutorials” have in fact lots of options
to allow the creation of simulations
that focus on different aspects of
subtomogram averaging.

doc tutorial

will present a list of possibilities as:

Particle sizes
Templates
Fourier sampling
Noise
Geometric constraints.

You can always recall the creation
settings of a present tutorial
by looking at its “info” file.

Ok, then... what is in our tutorial “test”?

>> ls test

we see several “table” files, (with extension .tbl)

real.tbl
 describes the real geometric configuration of the synthetic particles.
 the results of an alignment project should approach this table.

initial.tbl
is just a blank table that covers the synthetic particles. It is intended to be uses as seed for
an alignment project

coarse.tbl
a perturbation of real.tbl

TABLES

dynamo_table_info
dtinfo

it is a practical way to get at once
an idea of what is inside a table file:

But we can also focus on some aspect of
the table for a more detailed depiction.

A basic command to view the orientations
of your particles is:

>> dtplot test/real.tbl

in this depiction modus of dynamo_tableplot (or dtplot) each point in the unit sphere represents the
direction of a particle as determined in the table (columns 7:9 store the angles).

A clearer and more informative scene can be produced passing more parameters. Try:

dtplot test/real.tbl ­lines on ­color r ­ct tag

Here, ct is the contraction of 'column_text', we tell tableplot to use the tags of the particles as text
label accompanying each particle. You should get something like the plot in next slide.

(you may need to close first the previous graphic to prevent depiction articafts, or choose a different
window)

This is a normal Matlab graphical window, with its usual functionalities:

save to graphic
format file

zoom in
zoom out drag rotate coordinates annotate

(feature not available
 in the Dynamo console)

Note

if you are working in matlab, you have an additional tab for graphic edition of your scenes

 dtplot test/real_table.tbl ­m sk ­sk 40 ­c 8 ­sm 30

modus: 'sketch': 3d positions of particles

length of each particle sketch

colours according to column 8 ('tilt')

marker size

dtplot: several depiction modii

dtplot test/real.tbl ­m c ­a inv ­template test/original_template.em

dtplot can also format data to pass angles and positions directly into Chimera:

an independent model
is opened for each particle

modus: 'chimera' actions: 'invert' (as chimera expects white protein on dark background)

TABLE RESTRICTORS

Accessing particles that fulfill a given requirement or combination of requirements
is a very common task.

Table restrictors are operators common to many Dynamo commands which
perform this particle search inside a table on the fly.

The explicit operator for restrictions is dynamo_table_grep (dtgrep) but in the
 next examples we will examine its action as auxiliary tool for other commands:

>> dtrandom 1000 ­o random.tbl

Let us create and example table with 1000 random orientations

You can check that the generated particle orientations do cover the unit sphere:

>> dtplot random.tbl

Now we show the effect of table restrictors:

>> dtplot random.tbl ­tr (abs)tilt<30 ­color r

This was a rather simple, intuitive restriction, easy to depict.

Restrictors offer more posibilities:
 * AND and OR operators,
 * selection of angular directions
* use of functions

Access the help on dtgrep
for a complete description

DATA

A further inhabitant of the test tutorial folder is a subfolder called data.

This is a Dynamo-style data folder, where particles are called following the convention:

test/data/particle_<tag>.em

with the tag number padded to five with zeros.

This format makes the folder recognizable for most Dynamo commands, and we can access it
comfortably in different ways.

First, try the “info” command for data folders: dynamo_data_info. Type:

>> ddinfo test/data

You should get the results on the next slide, which provide an overview on the contents of the folder.

number of particles

sidelength

But they can get viewed directly, as a whole:

dslices test/data ­labels tags ­j c8 ­ls 12

labels the “tag” number of the files

projects 8 slices from the center: (by default in direction z)

dslices test/data ­labels tags ­tags [9:43] ­j c8 ­ls 12

or for individual particles or user defined sets

dslices test/data x|y|z ­labels tags ­j c8 ­dim [8,1]

simultaneous
 viewing directions

labels for each particle
(tags are deduced by
 parsing the filenames)

TABLES AND DATA

Tables are important because they describe the geometry of data particles.

They are connected by the “tag” numbers that determine which row
in a table refers to which particle file in the data set.

Let's see the basics on how tables and data sets work together.

 >> dslices test/data ­jy c6 ­t test/real.tbl ­align on;

We can pass directly a table:

and tell the command that it has to be used to align the particles

dslices test/data ­jy c6 ­align on ­t test/real.tbl ­tr [mang]0,0,0,60;

And again, table restrictors can be embedded into the command

Here the restrictor [mang] (mirror + angle) selects all the particles around the angular direction [0,0,0]
or its mirror direction with a maximum aperture of 60 degrees.

In this case, only two particles of the original two will survive.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

