3y 0
‘ynamo

Managing projects from the command line: basics

Let us create a small tutorial data set with an accompanying project.

We will use as template a ribosome in a 32x32x32 cube

>>dtutorial trib -p prib -template ribosome32.em -tight on;

Notice the template assigned to the project:

>> ddb prib:template -3j;

which is a lowpass of the template in the tutorial:

>> dslices trib/original template.em x|y|z -j *

open the generated project with dynamo project manager (or its shortfom dpm)

>> dpm prib

The command dtutorial creates numerical parameters that are more suitable for the default thermosome template.

Besides, in this tutorial we want to produce more iterations than just two, each in one round.

Obviously you can make the changes in the GUI (that's what it is for!).

But notice the alternate way of passing parameters into a project by the command line

>> dvput prib disk -inround 1 ite 2 -cr 360 -cs 60 -ir 360 -is 60;
>> dvput prib disk -inround 2 ite 4 -cr 60 -cs 20 -ir 60 -is 20 -rf 3;
>> dvput prib disk -inround 3 ite 4 -cr 20 -cs 8 -ir 20 -is 8 -rf 6;

* The syntax of dvput is explained in
its documentation (ddoc dvput)

* Each parameter is explained
with the dvhelp command:
- without arguments lists
all project parameters
- with a parmeter name as argument,
it will look for specific help on
that parameter:

=> dvhelp cr
name : cone_range
shortform : cr
type of dinput : 1
round behaviour : generic_round

Parameter: "cone_range"
The first two Euler angles are used to define the
orientation of the wvertical axis of the protein.
First Euler angle {(tdrot) rotates the template around 1ts z
axis.
Second Euler angle (til1t) rotates the template around 1ts x
axis.
Dynamo scans for this axis inside a cone: The "cone_range"
paraneter defines the angular aperture of this cone.
360 degrees s thus the wvalue for a global scan.
To skip the part of the angular search that looks for
orientations, you have to set
1} "cone range" to zero, and
2) "cone_sampling" to 1.

4
0]
o
©
a
(8]
=
i)
O
0]
‘™
0]
4
Q,
0]
=
©
a
>
o)
D)
O
()
e
+—
=
o
y“
—
n
=
@
(@]
@
—
(&)
2
o
-
o
()
e
+—
©
©
9
>
@)
>
=
W..
@)
Z

i
Al =
£

=

=

R RO ORI

L BEEEEEEE
Alelolelelolo]o]e

LIEEHHHHEH

Slolalalz|z|z|z|n
Ale|n]e|ale|e]e]e

.. the GUI updates, as the numerical scheme for the iterations will have changed

We can make sure that the project does not
need a lot of computation time:
>>dvtiming prib

Computing time estimation in one CPU for 8 particles and 1 reference(:
Em:5ls

Expectation under perfect parallelization for 1 processor(s)
&m:5ls

... SO we can unfold and run the project in the usual way:

>> dvunfold prib
>> prib

when running Dynamo from a shell you need to execute the
produced execution script (with extension .exe,.bat)
or submit it to a queuing system(with extension .sh)

|

(1) Mew 1o MATLAB? Watch this Video, see Demos, or read Getting Started.

... and after completion we can
check the actually used
computation time:

B

>> dvtiming check prib

which (in this case) turns out
to be quite accurate.

With multicore and MPI runs
things won't be so accurate!

4]

fx =

Time invested in alignment during all recorded iterations in this run:
Sm:32s

MEW RUM OF THE SAME PROJECT

iteration: 10
Computations for iterative refinement started at 02-Sep-2012 14:33:27

Assenbling results and averaging started at 02-Sep-2012 14:34:56
elapsed time is 89.000000 seconds (1m:29s)

Time invested in alignment during all recorded diterations in this run:
1m:29s

[timing_check] 1m:29s
Attention: this time measurement might include previous runs on the project.

=
P | e |

You probably know how to retrieve the results from the database using the GUI:

i a i a _?J _?J _?J K B 1m:13s
| --Mb; - blocks fligsl _?J

— Show

template J tags E‘J 1 2 3 4 5

mask J
iteration 38 reference W
maskedtem.J : ﬂ

angles | figure __J 1 _+J binning | 0
AVErages

tables |

b

Safe area

[» &

(& simple _Imapview nallery

gfofsc J _JEMANZ _list) -=tar
CComatrix J

database J :nnvergen:e‘J :he:klasu ite 1 :B/8

~

Pressing here for this parameter combination would create a simple depiction:
the projections along x,y and of the averages attained in iterations 3 and 8

IE

but the files can also be located, accessed and operated upon with the database:

1- pick the project

Ipnhfr!sultsmz |:||:||:|3fi'|.'!|'ig!Sfi'll'ErigE_rEf_IJIJI
APTIETEs Ul s /T _0U04] averages/ average_ref_d01
Jpribfresultsfite_0005/averages/average_ref_001_i
Jpribfresultsfite_0006/averages/average_ref 001 ite_0006.em

Apribfresults/ite_0007 /averages/average_ref_001_ite_0007.em
Ipnhfr:sultsm: IJIJI:I!fi\r:rig:sfivzragz_rzf_uul |t= I:II:II:I! am

2- query for
standard results

Apribfresultsfite_0001 faverages/refined_table_ref_001_ite_0001 thl
Apribiresultsfite_0002/averages/refined_table_ref_001_ite_0002.thl
Apribfresults/ite_0003/averages/refined_table_ref_001_ite_0003.thl
Apribiresultsfite_0004 Javerages/refined_table_ref_001_ite_0004 thl
Jpribfresults/ite_0005/averages/refined_table_ref_001_ite_0005.thl
Apribfresultsfite_0006/averages/refined_table_ref_001_ite_0006.thl

Apribiresultsfite_0007 Javerages/refined_table_ref_001_ite_0007.thl
Apribfresults/ite_0008/averages/refined_table_ref_001_ite_0008.thl

3_ Select |tems] pribiresults/ite_0009/averages/refined_table_ref_001_ite_0009.tbl

Apribfresults/ite_0010/averages/refined_table_ref_001_ite_0010.thl

Of IntereSt r Passing retrieved files to depiction function: "dynamo_mapview'

4 operate on them:

4a with the Dynamo
linker, or

4h with local tools

... and also with the command line tool for database browsing ddb:
>> ddb prib:a:ite=[3,8] -m

DAL A e
rreroormr

o
[D

|

[]
FINE .
[] u

d [z Dy

The ddb tool lets you access different elements in a project or set of projects:

For instance:
— Inside prib, look for database items of type average (shortcut a)

project prib P wildchar strings operations on retrieved objects

g CiMew to MATLAB? Watch this Video, ses Demos, or read Getting Started,
PP/ FEsU IS/ TTe_UUUS,/ averages,; average_reT_UUl_1te_UuUu= . &
Spribfresul te/1te 0010 /averages//average_ref _001_1te_0010.enm

- >> ddb|prib:g:nte="|-d

2 Jtrib/tenplate. en

prib/results/1te_0001 /averages/average_ref _001_1te_0001 . en
Sprib/results1te 0002/ /averages,//average_ref_001_1te_000Z.en
Sprib/results,/1te_0003/averages/average_ref _001_1te_0003.en
Sprib/results,/1te_0004/averages/average_ref _001_1te_0004 . en
Sprib/results/1te_0005//averages/average_ref _001_1te_0005. en
Sprib/results/1te_0006//averages/average_ref _001_1te_0006 . en
prib/results/1te_0007 /faverages/average_ref _001_1te_0007 . en
Sprib/results1te 0008/ averages,//average_ref_001_1te_0008.en
Sprib/results,/1te_0009//averages/average_ref _001_1te_0009.en
Sprib/results/1te_0010/averages/average_ref 001_1te_0010.enm
x>

L | figisisics

dr

The syntax is general for anything
that has to do with a project:

>> prib:eo_fsc:ite=[1:10] -p

The syntax and list of “database items”
that can be retrieved with ddb is in its
documentation (ddoc ddb)

Closer information on the database items
can be invoked with dbhelp

and the tutorial on plugins

013

0.8

0.7

05

04

0.3

01

=

ddhelp average

**] 'awverage'
Main result of the iteration. Awverage of all particles passing the
the threshold, with a missing wedge compensation.
- Cenerated 1in: [fteration_assemnble]
- Computed as: [fweight_divide] s applied onto 'average_unweighted'
and 'fweight_average_ram' as input.

Specifications:

kind : average

db_path : results/<ITEFOLDER=>/averages
ID : RI

ext :oen

Family : Iteration results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

