

Tutorial on tools for
Classification and Visualization

20/January/2012

GOALS

In this tutorial we present a extremely simple artificial data set. We will use it to get familiar with:
● general classification tools
 - creation of distance matrices
 - using PCA analysis

● visualization tools for large data sets (dynamo_gallery)
● visualization tools for small sets of volumes (dynamo_mapview, dynamo_slices)
● visualization tools for alignment and classification results coded in “table” files (dynamo_tableview)

SYNTAX

This tutorial assumes that you have already followed the basic tutorial and that you are familiar with the basic
concepts of Dynamo, as projects, or basic syntax in Matlab or in the Linux/MacOS/Windows command shell.

Normally we will indicate commands in their Matlab version.
 You can also use the Linux/MacOS/Windows corresponding commands, with the obvious adaptions

Creating the data set

Type in Matlab:

 >> t=dynamo_tutorial('tutorial_ccmatrix','M',8,'N',8,'project','project_for_tutorial_ccmatrix');

This creates:
* 8 particles of one class (M) and 8 particles of another class (N)
* a Dynamo project with numerical settings for the alignment procedure
 together with auxiliary files (as masks, templates, etc)

NOTE:

In standalone modus, the Linux/MacOS shell syntax for this command would read:

$ dynamo tutorial tutorial_ccmatrix -M 8 -N 8 -project project_for_tutorial_ccmatrix

and in the Windows cmd shell:

> dynamo.exe tutorial tutorial_ccmatrix -M 8 -N 8 -project project_for_tutorial_ccmatrix

Inspecting the data set

We could use the data browser dynamo_gallery tool for a closer examination (later).

For a quick view we can type in Matlab:

>> p0=dynamo_particle('project_for_tutorial_ccmatrix','tag','*');

This writes to the Matlab workspace variable p0 all the particles ('tag', '*') associated to the project.

Now, we can visualize them with:

>> dynamo_slices(p0,'range',33,'panel',1);

>>dynamo_slices(p0,'range',33,'panel',1);

This is the z-view of all the particles assigned to the project (showing the section #33 of the cube)
Particles are initially randomly oriented.

>>dynamo_slices(p0,'y','range',33,'panel',1);

Same particles viewed from the 'y' direction, showing the effect of the missing wedge

Ok, so in theory the tutorial generated data belonging to “two classes” of particles....

but...

Do you recognize which particle is in which class?

Do you recognize which features define each class?

The tutorial that you just generated includes an alignment “project”

We will edit and use this project to align the particles and, simultaneously,
provide us with ground information to perform afterwards a classification.

... probably not without aligning them first.

The “ccmatrix” Dynamo parameter is set to zero.
this means that after each alignment iteration,
Dynamo will not classify the newly aligned particles

>>dynamo_vpr_info project_for_tutorial_ccmatrix;

You should see something similar to the image on the left.

Seeing the project

In this tutorial we want to create a project that computes
The basic piece of a classification procedure, the “ccmatrix”
(constrained covariance matrix) after each alignment iteration.

We will edit the project to include these computations.

$ dynamo vpr_info project_for_tutorial_ccmatrix

In Linux/MacOS:

In Matlab:

Editing the project

>> vpr=dynamo_vpr_modify('project_for_tutorial_ccmatrix','ccmatrix_r1',1,'ccmatrix_r2',1);

>> dynamo_vpr_unfold(vpr);

We want to change the values of parameter “ccmatrix” to 1 in rounds 1 and 2.

We operate on a virtual project that copies the contents of the existing project:

And then save the modified virtual project into the hard disk as a new project

Note that we have not changed the name of the project, so we can check again the status of the project in the disk:

>>dynamo_vpr_info project_for_tutorial_ccmatrix;

Now, “ccmatrix” is active in
both rounds 1 and 2 ...

In round 1, particles will
not be symmetrized
when computing the ccmatrix

...BUT in different forms:

In round 2, particles
will be symmetrized.

>>dynamo_vpr_info('project_for_tutorial_ccmatrix');

Running the project

A simple way to run the project is just executing the execution script:

>> run project_for_tutorial_ccmatrix.m

>> project_for_tutorial_ccmatrix

or

If the project was to be executed in the linux shell, the execution script will be invoked as:

$./project_for_tutorial_ccmatrix.exe

In this case, you might need to change your permisions on this file before you actually execute it:

>> project_for_tutorial_ccmatrix

$ chmod u=rwx project_for_tutorial_ccmatrix.exe

.... NOW WAIT FOR DYNAMO TO COMPLETE THE PROJECT

Results of the project To scan the progress of the project you can use:
dynamo_vpr_results (Matlab) or

 dynamo_vprf_results (Linux/MacOS)

Results of the alignment Result of the project that we need to post-process now to produce a classification.

You should see this when the project is complete:

>>dynamo_slices(p1,'range',33,'panel',1,'dim',[4,4]);

>>p1=dynamo_particle('project_for_tutorial_ccmatrix','tag','*','ite',1,'align',true);

Want to take a glance on how the aligned particles look like?

A compact way to access the particles from the command line is with “dynamo_particle”

selects all ('*') the data
particles associated to

the project
Selects results
of first iteration

in the selected project.

An output variable is generated.
(in this case a Matlab cell array)
Each entry of this cell array is a cube

Orders the command to
use these results to

align (rotate and shift)
the particles

Now we depict this array of particles in panel format.

We depict only (z) slice #33 on each particle

You can see the different effects of the missing wedge, depending on the initial orientation of the particles...

...but do you see different classes yet?

A long intermezzo: dynamo_gallery

We will take now some time (and a lot of slides) to play with the data browser dynamo_gallery.

The main functionality of the browser is to allow the user a flexible control on which particles on a
project need to be load in memory for a resonable depiction.

 This is a trade off:

● Simultaneous loading of many or very large subtomograms can freeze your computer.
● ... but constant access to the disk can slow down the interactivity.

Invoking dynamo_gallery

The most compact way from the command line would be:

>>dynamo_gallery('project','project_for_tutorial_ccmatrix');

As freshly opened, the gallery will show you just one particle of the ones associated to the project.

The data location is pointing in the right direction, and table files are already loaded in the internal workspace

A good start is to press here: it shows the tags of particles in disk, in memory and in the table, and warns
on possible mismatchings

The popup window should
 look like this:

In this project we don't have
a massive number of particles,
We can thus load all of them
simultaneously into memory.

Loading particles:

1) Switch on (Operations) radiobutton

 This will apply on the each particle
 whatever series of Operation is defined
 in the [Operations] Panel (in the right).

 Each raw particle will loaded, transformed
 and deposited in memory

 2) Switch on (Inverse Table for particles)

 This indicate that you want to align
 the particles (using the active table)

3) [Load] into memory
 In this case, it will take seconds.
 For large data sets it can be quite
 time consuming.
 Also, you might want to use the
 “bin” option before you load the
 particles to save memory

... and then refresh the plot...

... wait until the Information Area anounces that the particles are already there...

... and select a range of particles to view...

The scene should now show all particles -in memory- inside this range

Here you indicate how many slices (around a central one) are projected to represent each particle.
In this case we represent one single slice (no projections) in the center of each each particle (they are of size 64)

You can use this Panel to select viewing orientations:
* Press [x], [y] or [z]
* Type or slide for the angles, then click [Refresh plot]

The depicted scene will change accordingly

You can also drag the “reference phantom”
To select the viewing orientation
(the rotation icon in the corner must be active)

Rotating the particles in the scene

If you type “v” on a particle in the gallery you open dynamo_mapview on this particle:

For instance here:

Choosing a single particle to inspect in detail

... or simply press the key “V” on the particle, if it is visible You can just pass the tag number of the particle
(for particles not in the current scene)

You open the familiar dynamo_mapview on the particle as seen in dynamo_gallery (in this case, aligned)

The particle is in the memory space of mapview, where it can be edited and displayed with the provided tools,
(masking, bandpassing, symmetrization, range selection...) etc,
or delegated to other viewers (EMAN2,Chimera...) than can render efficiently the isosurfaces of the processed volume.

Pressing “F” on a particle,
you see the missing wedge on that particle

(with the corresponding geometrical transformation) Compare these two: (next slide)

Viewing the missing wedge
of particles in dynamo_mapview

Projection along z
(as shown in the gallery)

Press [[F]]

Press [[F]]

dynamo_mapview shows the
present fourier components

as series of slices (in this case from z)...
...or isosurfaces

[Particle Selection] Panel

You can select particles left-clicking on them
(and right-clicking to deselect).

Groups of particles can be selected drawing
a selection box
(start with middle-click, quit with “Q”).

You can import/export a Selection
 using the file quickbuffer.tags
This text file contains just a column
of integers (the selected tag numbers)

It is customarily used to pass
Selection sets across other
applications in Dynamo
(or to and from the command line)
in a quick way.

[Particle Selection] Panel
Averaging sets of particles

This pushbutton opens a dialog box
Where you can detail numerical settings
To compute and average of the selected
particles.

Particle annotation: [Labels]

At each corner of the particle you can show
a table entry for the corresponding particle.

This corner shows always the particle “tag” number
(shown in blue if the particle has been selected
 in red otherwise)

The image shows the initial settings, showing
columns 10, 8 and 22 of the table
(in clockwise order from the up left corner).

You can choose any other column in the table
(type it in the input field),
or switch the label off.

Selection of particles according to table properties

It can be useful to group particles according to their statistical properties.
When analyzing your data, it is not uncommon to get into thoughts as the following:
 “Hm... I'd like to examine the 30% particles with best cross correlation coefficient,
 but only those whose orientation is close to the beam direction, and
 also those that belong to a certain label that I've put previously in the table”.

Command line tools as dynamo_table_restrict or the graphical table manager dynamo_tableview
provide extensive support for such functionalities, but dynamo_gallery can deliver simultaneous
visual support on the Selection.

Select here a table column
to use as restriction criterion

Use this field to select an interval of values (on the selected table column)

Number of particles
that meet this restriction

Number of particles
that meet all restrictions

Press these buttons to merge/intersect
the “selection by property” to the Selection set.

You can inspect here the current contents of the Selection
(and, obviously, you can check the blue/red labels in the scene)

Selection of particles according to table properties

Pushbutton [view] opens a
histogram for the values
of the selected property

in all the tags in the table

You can mark an interval of values
 (left and right clicks)

And when you leave
the histogram,

it updates the set
“selected by property”
in dynamo_gallery

... we can thus make an average of the particles “selected by property”....

Add these particles to the general selection.... ... the Selection labels get updated....

... and also the
 Selection report

We can now open the
average tool

.

In the GUI for averaging, all the input fields contain pipelined values from the gallery

As you can operate further to restrict the set...
it is always a good idea to plot the tags
 of the particles that will enter into the average

In the resulting plot, the tags that will
enter the average are marked in blue.

They are in the CC range that we
indicated inside dynamo_gallery

We can thus determine where we want our output
(as structured Matlab workspace variable and/or as file)

... and then compute the average...

(A final remark on dynamo_gallery)Navegating large data sets

The tools in the [Shown particles] Panel will be useful (i.e. completely necessary) in real data sets.

They allow you to load into (or release from) memory subsets of particles from the hard disk in a controlled way.

Switch ON if particles out of the scene
scope must be released immediately

from memory to allow loading new particles:
i.e. it locks the total size of the particle set allowable in memory

[prev. set]
Brings into the shown scene

 the previous batch of particles
 already available in memory.

(batch size defined
 implicitely here)

When switched ON, previous/next batch of particles
 defined in the table will be automatically loaded

into the shown scene if required
 (by pushbuttons [prev. set] or [next set.])

even if their particles are not already in memory.

[load if needed]radiobutton:

Ok, we checked the alignment provided by the “table” files by using dynamo_gallery
to inspect how data particles transform under these tables.

Now we start the next goal of the tutorial, the actual classification procedure.
We will base on the analysis of the ccmatrix objects created during our project.

How do we get the ccmatrix in general?

There are different ways to compute a ccmatrix to setup a classification.
In this tutorial we just computed them as “collateral product” in an alignment experiment.

In many cases it will be more appropriate to computed them independently.
This can be done using “dynamo_ccmatrix_project_manager”
(an analogous of “dynamo_project_manager”)
... or combinations of lower lever commands of the Dynamo toolbox.

Starting the analysis of the ccmatrix

>> dynamo_ccmatrix_analysis('project','project_for_tutorial_ccmatrix');

Back to work!: classification

dynamo_ccmatrix_analysis will open on this project

click here to fill up
all fields of the GUI
according to the
 current values of
* project
* iteration (1)
* reference (1)

By default, it opens
on the first iteration.

This is correct, we want
to analyze first this one.

This will pipeline
all the next steps
to these settings

Now, all the fields are coherently filled with valid database locations and you can proceed:

Click here to see the
cc-matrix

This matrix represents the similarity of each pair
of particles after the first round of alignment.

Missing wedge compensation has been taken into
account by filtering both aligned particles to the
common fourier component.

We first try to create a basic classification,
using the Matlab commands for
classification based only on this distance
matrix

In the GUI dynamo_ccmatrix_analysis

* choose 4 leaves

* press here to compute a classification

The graphical output should look similar to this:

The original matrix
The matrix reordered according
To the computed classification

In this case, one starts to see the presence
of two populations

Hierarchical structure
 of the classification

Labels of sets created in particles
 Indexes are “subreferences” in Dynamo

The identity of the particles assigned to each subreference
Is stored in these files, in different formats.

● A Dynamo-type table, assigning the subreference number
 of each particle in the column 35.

● A file (extension .tags) for each subrefrence

● A single two column file with (tag/sreference) pairs at each row.

They are all text files and can be opened with an editor.
or displayed into the screen using type (Matlab) or cat (Linux)

You can also click the [view] option suggested in the GUI
Or right click on a file name to get more suggestions.

Finding the particles

Distribution of particle orientations

Note:
dynamo_tableview on the “marked table” will give you a
more flexible insight into the information coded in a table.

This is a good moment to check if the created classes
are an orientation artifact. A possible way is to depict
the orientation of each particle as a point in the unit sphere,
indicating with the same color those particles on the same
Subreference number.

Click here

... to produce this depiction

Better alignment -> better classification

What happens if we classify the particles according to the results of the SECOND alignment round?

Input: [Iteration]: 2
and press [[Return]]

Update the database links
(just pressing here)

And compute again
 a classification

The difference of similarity between
particles of both groups is more apparent...

... making the classification work better

Now the two populations are evident,
both in the hierarchical tree
(where 3 of the 4 generated
subreferences are clearly related)
and in the reordered ccmatrix.

Computing Principal Component Analysis

Why PCA?

The distance-based classification did already provide a good result in this case, and we could
already produce our averages using the particle sets assigned to each produced subreference.

However (and in our experience) this kind of classification will not perform well in many real cases.

We will now describe how the same GUI for ccmatrix analysis can be used to drive a PCA computation.

Data+Table

Xmatrix

PCA
eigenvalues

PCA
eigenvolumes

PCA
eigentable

Kmeans
classes

(subreferences)

Subaverages
(class averages)

Overview on PCA analysis
trough dynamo_ccmatrix_analysis

More information in the Classification Roadmap document in our website

Check if the Xmatrix is already available

The Xmatrix is just a computing help.
Is a matrix that stores:
* in each row a particle
* in each column a pixel value

In this tutorial the Xmatrix not be available at this point:
 the parameters of our original project
project_for_tutorial_ccmatrix

did not include a command to create the Xmatrix.

The information area will thus warn us:

What is the Xmatrix?

Once these parametes are
set we click here
to start computing

the Xmatrix

We can select an series of
“actions” (i.e. bandpass,
resizing,
symmetrization)
 to be operated on each
particle

An Xmatrix can be huge if you have many particlesr very large particles.

Keeping large matrices in (RAM) memory can block your system.
You can use this parameters to tell Dynamo what is the largest matrix size
That you allow in your memory. If the Xmatrix of your problem turns to be
Bigger, Dynamo will sepate it in pieces and produce a separate file for
each matrix fragment.

This will slow down performance, but ensure the stability of your system.

Computing a Xmatrix

The Matlab (of Linux/MacOS shell) will be busy for a while...

... until dynamo_ccmatrix_analysis
anounces that the Xmatrix is ready

Now you can compute the PCA

Output will be stored in these files

In this tutorial, the output file names
are standard database locations.
They were automatically generated as
we are working inside a project, but
you can forward the output to other
folders.

This will assign to each particle its coefficient
expansion in terms of the computed eigenvectors.

This information is integrated with the rest of the available
information on a particle in the “eigentable” file.

Columns 41, 42, etc.. will store the 1st, 2.nd coefficients, etc.

Choose 5 as total number of eigenvolumes to compute

Let it some time to run....

Now, in the output “eigentable” each row has an associate
set of eigenvectors. We can play a little to view them with
dynamo_tableview:

 Press here

Note that this is equivalent to open dynamo_tableview
on the file indicated in the Information Area.

This can be done from the command line or right clicking
on the field and selecting dynamo_tableview in
the menu of possible actions that will popup.

Then, we want to see a scatterplot
of the two first eigencomponents

Exploring the eigentable

dynamo_tableview will open with on a scene similar to this one:

So, we need to change the
“Depicted prorperties”:
We need to pick
columns 41 and 42

We want now to see a scatterplot
of the two first eigencomponents
of all the particles

And we need to select the
“scatterplot” selection modus

With these depiction settings:

Note that the table has an original “cheat” mark in column 22, labeling which particles were generated in which class.
We just select all the available classes for the depiction, to ensure that all the particles in the table are plotted
(leave the field [show classes] empty, tableview will fill it with all the values detected in column 22)

You should see
two clusters

(more or less)

Note that you can export the scene
to edit it with Matlab native tools.

Is the clustering produced
by our PCA analysis true?

Let us compare it with the ground truth
(contained in column 22 of the table)

... and label label them also according to column 22

We color each the points in the
Scatter plot of the eig1/eig2
according to their value in column 22...

We draw the result in another figure for clarity...

Apparently, the two first eigenvalues
of our analysis catch the -synthetically
Generated- differencing features
of the data set:

One cluster gets painted in blue
(labeled “1” during the genaration
 of the data set),
The other cluster gets painted in red
(and includes all the particles
 labeled as “2”)

Looks good...

So the “cheat” in column 22 tells us that the analysis will be right...
 In real life, the scatterplot already tells us that classification according to the first two eigenvalues
will give us a good separation. But we still wouldn't know if the induced separation has a physical meaning.

So, we compute the classification...

with these settings

... oputput is generated to the same area as with clustering
 Here the text files with the classification graph...

... and here we command the production and depiction of subaverages...

The [view] pushbutton should give you a window similar to this one:

Perhaps select
a smaller range
of z-slices
(e.g. 40 to 45)

Apply a C8 symmetry to increase the signal quality

Use the “correlative orthoslices” option
to see corresponding slices of the two averages

 side to side

 Now it becomes clear how the data set was modeled
the two “classes” arising in the PCA

correspond merely to different magnification

We can confirm our visual impression by measuring distances on screen:

choose the “y” view
(to measure on the
diagonal)

Select a single orthoslice
(across the center: 33 to 33)

Switch off the correlative
orthoslice option and choose
the first average

Switch on the clicking tools

Left click:
Places red point on screen
(labeled “C(enter)” clicker)

Right click:
Places blue point on screen
(labeled “N(orth)” clicker)

Measure the distance between two corners:
(clicking on the darkest spots)

You should get something around 30'9

Note:
You can get more precision using the intensity profile:

Now we do the measurement for the second average We probably need to refresh the screen

We place again the
red and the blue markers...

... and the distance now
should be around 28 pixels

.... and this actually corresponds to how the data set was modeled:
 it comprises random rotations of two templates of same molecule, one scaled to the 90%.

This toy classification example by PCA just recovered this scaling factor.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

