

Catalogues: Basic Tutorial

What are Catalogues?

Catalogues are objects used to keep track of the tomograms involved in subtomogram averaging experiments.

They provide a framework to construct models and pick particles, facilitating the retrieval of information and
the importing of work carried on third party software.

In this tutorial

We will create a synthetic set of tomograms, and show how they can be integrated into a catalogue for
visualization.

Along with the tomograms, metadata files (in) will be also created. These metadata files code positions and
angles of particles in the tomograms, and the tutorial command will generate different formats. We will see
how to import them.

Also, we will see how tomographic properties (defocus, fourier sampling description,etc) can be input into the
catalogued information.

So, type in your Matlab or Standalone Dynamo console:

>> dctutorial testct -n 3 -tc [9,4]

* This generates 3 volumes, each one with 2 templates (one with 9, the other with 4 copies)
* Use help dctutorial for further options.

Lots of things happen... Actually the tutorial program already suggest us things that we could do
in order to get familiar with the functionalities of the tutorial tools....

Examples of orders
to construct catalogues

onto the generated
tomograms

Examples of orders
to crop particles

from the generated
without using catalogues

... but we just ignore them and take a look onto the generated data set:

Remember that we did not generate a catalogue, but just some set of data to play with/
The contents of this folder have nothing to do with the internal structure of a catalogue folder.
... and anyway, the idea is that you should not need to know the catalogue folder structure to browse in it!

Those are just some small tomograms (256 pixels of sidelength)

These are Dynamo tables, which code
the position of the different particles
in the differerent tomograms using the
 Dynamo table format.
This is a simple text format, you can use
dthelp (dynamo_table_help) or dtinfo to
know more.

Volume lists

They are the easiest way to create
catalogues, and also a good way to
extract afterwards information from them.

In this tutorial, they simulate how an
user would proceed to start to organize
his or her data to input it into a catalogue.

 >> dpanelview files testc/tomograms/tomogram_*.em -otf on

But first, let us start just with a quick glance at the tomogram contents, without any cataloguing yet...

* This shows for each file (in the regular expression) the projection of all the slices
* They are computed on the fly (parameter “-otf”) to avoid crowding the memory. These tomograms are unrealistically
 small and this would not be necessary, but in the general case it will.
* You can click on an axis to get the filename in the information window: there you can right click (or CTRL-click in
Mac) to get a menu of actions with more options.

Some of the options are adequate for viewing tomograms
of big size.

For instance this is the preview window, which acts as a Preload Tool for other windows, in order to control
beforehand which areas of the tomogram will be loaded onto memory.

selects the
height of the
visualized z-slice

Selects the boundaries of subvolume of interest,
which can be then loaded into some other window
for more precise visualization and/or modelling

Other graphical windows

tomoshow more is indicated to depict fast transitions of slices across the volume

In the “offline” version (with preload
of the volume to memory), transitions
are equally fast in x y and z.

You can try it in this tutorial, but bear in
mind that this can cause problems in
larger tomograms/

In the “on the fly” version slices are read
in the moment of depiction: everything
is thus slower, specially for x and y
views, where two subsequent slices
do not lie sequentially in the hard disk.

Now that we know how the volumes look like, we come back to the catalogue creation.

We start with one the .vll files that were generated through the tutorial: simple.vll

This simple vll file rcorresnponds be the most basic way an user can employ to keep track of their tomograms:
just writing a text file with the name of all the files of interest.

Now, we create an actual catalogue out of this information.

Just by copying and pasting from the screen one the actions suggested by the tutorial:

>> dcm ­c testc_simple ­vll testc/volumelists/simple.vll;

dcm is the short name for the dynamo_catalogue_manager command. Here, we let Dynamo parse the
contents of the vll file to create a new catalogue in disk (named testc_simple), which we can then open simply by:

>> dcm ­c my_catalogue;

 we can start to explore the contents of the catalogue by opening it:

>> dcm ­c my_catalogue;

It has recognized the files and assigned indices, but no tomographic metadata is there yet.
Any information not contained in the tomograms themselves has been initialized to default values.

If you input your values for the properties here, they will get stored into the catalogue under edition.

They can get transmitted to any objects derived from the catalogue.

You can choose which properties attached to each tomogram are visualized for edition here

Besides the creation of the database and assignment of properties, the front GUI links the volumes to
some basic utilities for visualization (tomoshow in Dynamo or the different windows of Imod, if you have
it installed in your system).

The tool that analizes a sample of the tomogram to check the apparent wissing wedge geometry is useful
mainly for formatting purposes, as it allows to check if the missing wedge in the tomogram:

is correctly described by the missing wedge that we are introducing as descriptor.

in the example we had indicated a fsampling
code of “1” (which means: beam along z, tilt
around y).
'An idealized missing wedge looks like this:

Passing parameters with the volume list

Volume lists can have a more detailed syntax. Let us check one the sample vlls created by the tutorial:

All lines between tomogram names are
orders or attributes of the tomogram.

Lines starting with “*” are assignations:
* ftype = 1
assigns the value “ftype” to the property
ftype of the previous tomogram.

We can operate on this table like before, using:

>> dcm ­c detailed ­vll testc/volumelists/detailed.vll;
>> dcm ­c detailed;
or simply
>> dgui testc/volumelists/detailed.vll;
(the default Dynamo actionon a.vll file is parsing it for catalogue creation and opening it)

When we open the catalogue, we see that the values of the parameters in the volume list file
 have been written into the catalogue.

Importing models: the “!” command

But catalogues are mostly intended to keep track of models and objects defined inside the tomograms.
Let us take a look into a volume list that informs the created catalogue about some model files that need
to be linked into the tomograms.

The format here is the same, but includes lines that start with “!”. Those are commands imparted to Dynamo
during creation of the catalogue. import FileIntoCatalogue just tells Dynamo that file in the same line
contains metadata for the corresponding tomogram (the file at the top of the block).

In this case, the metadata are Dynamo models, but you can pass different formats. More information in:
>> help cvolume.importFileIntoCatalogue

File names are arbitrary, do not need any special convention.

In any case, if you create a catalogue for this vll and open it:
>> dgui tersc/volumelists/withmodels.vll

you'll see that the two files that you asked for in each
volume are being seen by the catalogue.

Under [Selected Volume] you can also
find a tool to open a summary of all the
models found for a given tomogram.

We don't care about most parameters right know: A whole lot of them are there just for depiction settings.

... but just to stop for the most important ones:

The class of the model in this case is the generic “model”... there some other classes for different tasks and to
describe different particle collection geometries.

Current number of CLICKED POINTS

* Points “clicked” by the user.
 In this case they were generated by the tutorial and imported by the catalogue.

 They are NOT ALWAYS points that mark the center of a particle intended to be cropped!
 Sometimes the model requires several steps between the positions clicked on screen and the estimated
 location of the particles: for instance with particles lying in a membrane you click on visilble boundaries
 of the membrane, then define a membrane and then generate a table.... but we'll see all of this later....

Current numebr of TABLE POINTS

* At some point you'll need models that contain table points: these points are the ones that will appear in “tables”
 used to crop data our of the tomograms and feed the subtomogram averaging refinement

... and the points!

You can start to get a feeling on how the model works just by listing them in the information window
and right clicking on the name of file to get a menu of selected actions associated with a model file.

For instance, you can just click on the ezplot utility to get a basic representation of the model points (next screen)

This depiction just plots the model points
in three dimensional distribution on a regular
MATLAB window.

You can interact with the window in the usual
MATLAB way to add annotations, control
graphics etc...

But now the question is:

How do we see the models in their context
inside the tomograms?

The most immediate way corresponds to the use of dynamo_preview, accessible as Preview/Load Tool in the
catalogue manager menu under the [Selected Volume] menu.

In the slide you'll see a possible representation, with the controls needed to generate it.

allows to use the rotation tool rotation tool
 depth

 of view
shows the models

attached to this volume

Region chosen to be loaded into memory 3d positions of all models found for this volume

You can change the color and other depiction settings of the model using dynamo_model_edit.
you can invoke it cliking on the [tomogram] menu to produce a submenu with, among other options,
the listing of model files found in the catalogue for this volume.

Then, you right-click on the model file of interest to edit its image in disk.
As dynamo_preview reads the model from the disk, clciking the [show] button will update the depiction.

Extracting particles command “>”

Particle extraction is the ultimate goal of the Catalogue construction. Let us start with some basic techniques.

Again, we take a look onto the created volume lists:

Lines starting with “>” are
crop operations.

They convert a volume list
into an object that can be
used into any of the Dynamo
programs that access data
sources.

Let us see an example in next
slide, where this vll structure
is used to access all particles
located in different tomograms.

>> dtcrop testc/volumelists/easycrop.vll reorder testm/vlldata 40

As suggested by the tutorial code, we write:

vll as generic data source sidelengthtarget data folder

If you are familiar with the syntax of dtcrop, you notice that the second argument, which is normally a table
has been replaced with a code word: reorder.

This instructs dtcrop to look inside the passed volume list to look for tables (or models or AV3 motls or
some other formats) that belong to a given tomogram, and extract them.

Original tags are not respected (as a “reordeing” takes place), but it a new table is produced that runs
on all the particles in the created data set.

You should the summary of
results announced by the code:

In other words, you have a data folder and a table that can be used as normally in Dynamo

>> dslices testm/vlldata j 0 ­t testm/vlldata/crop.tbl ­align on ­otf on;

Command line accesses will be seen in a next tutorial.

We will see how catalogues mix with data containers in Dynamo. For instace:

>> VLL = dData.new('s','testc/volumelists/easycrop.vll','m','reorder');

here, VLL is an object that allows accessing data sources of any type. In this case we have use
as source (“s”) a volume list file with text, and we have especified that the metadata ('m') needs to be
constructed reordering the files indicated inside the volume...

Now we can use the object in a variety of forms (the “methods”)
 that are attached to the class.

The most basic use would be to extract directly a particle:

>> p = getParticle(16,'sidelength',40);dview(p);

COMMAND LINE ACCESS

The notation might seem obscure at the beginning,
but it quickly pays of to use these objects when you
manipulate particles stemming from different tomograms
with different models defined to extract the subtomograms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

