Model management with *Dynamo*: Filament geometry:

We create a tomogram that includes tubular looking objects.

The catalogue manager will create a catalogue to archive the created tomogram and also the models that we will create around it.

We pick with [1] one of the tips of one filament. It is called 'North' point in the [Anchors] Menu

with [2] we mark a second point (called the 'South' point in the [Anchors] panel)

We can even mark a third one to select the width of a plane....

... [set a plane] for the three points we just clicked.

Here, we would have several options to click points that will define a backbone.

A backbone represents a "smooth" version of the path of the filament, foreseen to encompass the case of bent filaments.

But we have to the define first a **model**, otherwise Dynamo will not know what to do with the points that we define.

We choose a model type called *filamentWithTorsion*, which operates creating crop points along the filament path.

We will see how to convert the *clicked points* into *crop points* for this particular geometry later.

By now, we have first to just create those points, so remember the basic controls

CLICK a point: [C] key

Delete last clicked point: [DELETE] key

Delete a point: secondary click, then select option

We have actually seeral options to create the points

OPTION A: click in in the plane that traverses the filament

OPTION B: click in transversal slice

While this will probably work for reasonably straight filaments, sometimes the filaments are bent or appear together with many other objects and are difficult to show a plane where you can pick all points at once.

In those cases we should generate orthogonal sections along the path.

32	bin	disk
Traverse path		
extract	sidelength	32
longitudinal	sync	1:10:100
Auxiliary view echo reset orthogonal		

If you want to try this B) option, just delete the model that we just generated:

... and just recreate it...

and you click directly on the centers [in lexicographical order]

The main window gets updated as you click on the 'slices along the path' window

Don't forget to save your work into the catalogue (= hard disk)

and we could crop particles already

z view x view

